

SUPPORT TO PHASE 2 OF THE ORASECOM BASIN-WIDE INTEGRATED WATER RESOURCES MANAGEMENT PLAN Work Package 1: Water Resources Modelling of the Orange-Senqu Basin

Capacity Building and Setting Up the Models in Each Country; Process of Continuous Review

February 2011

The Support to Phase 2 of the ORASECOM Basin-wide Integrated Water Resources Management Plan Study was commissioned by the Secretariat of the Orange-Senqu River Basin Commission (ORASECOM) with technical and financial support from the German Federal Ministry for Economic Cooperation and Development (BMZ) in delegated cooperation with the UK Department for International Development (DFID) and the Australian Agency for International Development (AusAID). The Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) implemented the study.

Prepared by

SUPPORT TO PHASE 2 OF THE ORASECOM BASIN-WIDE INTEGRATED WATER RESOURCES MANAGEMENT PLAN

Work Package 1:

Water Resources Modelling of the Orange-Senqu Basin

Capacity Building and Setting Up the Models in Each Country; Process of Continuous Review

ORASECOM Document No. Date of Publication: Authors: 003/2011 February 2011 Ronnie McKenzie Pieter van Rooyen Susan Swart Manie Maré Bennie Haasbroek (Hydrosol) Steve Crerar

Final Report

Status:

APPROVALS

For the Consultants:

RS MCKENZIE Managing Director: WRP Consulting Engineers

For ORASECOM:

L THAMAE Executive Secretary: ORASECOM Secretariat

Study Name		Support to Phase 2 of the ORASECOM Basin-wide Integrated Water resources Management Plan								
Report	Title:	Capacity Building and Setting up the Models in each Country; Process of Continuous Review								
Submitted by:		WRP Consulting Engineers in association with Golder Associates, DMM, PIK, RAMBOLL and WCE								
REPOR	TS, WPS AND OTHE	ER DELIVERABLES SUBMITTED	TYPE	No.						
Overall	Study									
	Inception Report		Report	004/2010						
	Overall Project Exe	cutive Summary	Report	013/2011						
Work P	ackage 1: WATER R	ESOURCES MODELLING OF THE ORANGE-SENQU	J BASIN							
	Strengths and Wea	knesses of Existing Models	WP	005/2010						
	Setting up and Test Changes in Catchm	ting of the Final Extended and Expanded Models; nent Yields and Review of Water Balance	Report & WP	001/2011						
	Modelling software	and datasets	Software	None						
	Capacity Building Process of Contin	and Setting up the Models in each Country; uous Review	WP	003/2011						
Work P	ackage 2: EXTENSI	ON AND EXPANSION OF HYDROLOGY OF ORANG	E-SENQU BA	SIN						
	Improvements to G Acquisition System	auging Network and Review of Existing Data s	WP	005/2011						
	Extension of Hydrol	Report	006/2011							
	Hydrological Databa	Database	None							
Work Package 3: INTEGRA		TED WATER RESOURCES QUALITY MANAGEMEN	T PLAN							
	Development of Wa Management Fram	Report	007/2011							
	Development of Sp	ecifications for the Water Quality Model	WP	006/2010						
Work P	ackage 4: CLIMATE	CHANGE IN THE ORANGE-SENQU RIVER BASIN								
	Downscaling Metho	WP	007/2010							
	GCC Downscaling	for the Orange-Senqu River Basin	Report	008/2011						
	Projection of impac Strategies	ts and Guidelines on Climate Change Adaptation	WP	009/2011						
Work P	ackage 5: ASSESSN	IENT OF ENVIORNMENTAL FLOW REQUIREMENTS	S							
	Literature survey ar	nd Gap Analysis	WP	008/2010						
	Delineation of Mana	agement Resource Units	WP	009/2010						
	Desktop EcoClassif	fication Assessment	Report	016/2010						
	Goods and Service	s Report	WP	010/2010						
	Environmental Flow	Report	010/2011							
Work P	ackage 6: WATER C	ONSERVATION AND WATER DEMAND IN THE IRR	IGATION SEC	TOR						
	The Promotion of W	IC WDM in the Irrigation Sector	Report	011/2011						
	Irrigation GIS Datab Tools	base, Interactive Database and Irrigation Scenario	WP	012/2011						
	Irrigation GIS Datab	pase and Interactive Classification Tool	Software	None						
	Irrigation Scenario	Generation Tool	Software	None						

TABLE OF CONTENTS

1	INTR	ODUCT	ION	1
	1.1	Genera	al Context	1
	1.2	Manag	ement and Environmental Context	1
		1.2.1	General	1
		1.2.2	ORASECOM	2
	1.3	Contex	t of the Study and this Working Paper	2
		1.3.1	GIZ Support to SADC and ORASECOM	2
		1.3.2 Resou	Support to Phase 2 of the ORASECOM Basin-wide Integrated Wat rces Management Plan	:er 3
		1.3.3	Background to Work Package 1 and this Working Paper	5
2	CAP	ACITY B	UILDING PROVIDED	6
	2.1	Introdu	uction	6
	2.2	Expert	Level Capacity Building	6
		2.2.1	Introduction	6
		2.2.2	Course Contents	6
		2.2.3	Manuals	7
		2.2.4	Feedback from Participants	7
	2.3	Decisio	on-maker Level Capacity Building	8
		2.3.1	Introduction	8
		2.3.2	Course Contents	8
		2.3.3	Feedback from Participants	8
3	SETT	ring up	OF THE MODELS IN EACH COUNTRY	10
	3.1	Expert	Level Capacity Building purposes	10
	3.2	Final e	extended and improved WRYM and WRPM data sets	10
	3.3	Future	updates	11
4	PRO	CESS O	F CONTINUOUS REVIEW	12
	4.1	Introdu	uction	12
	4.2	Capac	ity Review and Needs Assessment	12
		4.2.1	Verification and reviews of Updates	12
	4.3	Basin	Water Resources Review	13
	4.4	Propos	sed Process	13
5	APPE		S	15

APPENDICES

APPENDIX A: Capacity Building for Experts

Appendix A1: Attendance and Feedback

Appendix A2: Course Material

APPENDIX B: Capacity Building for Decision-makers

Appendix B1: Attendance and Feedback

Appendix B2: Course Material

LIST OF FIGURES

Figure 1-1: Orange – Senqu River Basin 1

LIST OF TABLES

 Table 1-1
 Summary of Work Package Objectives and Main Activities
 4

1 INTRODUCTION

1.1 General Context

The Orange - Senqu River originates in the highlands of Lesotho some 3 300m above mean sea level, and it runs for over 2300km to its mouth on the Atlantic Ocean. The river system is one of the largest river basins in southern Africa with a total catchment area of more than 850,000km² and includes the whole of Lesotho as well as portions of Botswana, Namibia and South Africa. The natural mean annual runoff at the mouth is estimated to be in the order of

11 500 million m³, but this has been significantly reduced extensive by water utilization for domestic, industrial and agricultural purposes to such an extent that the current flow reaching the river mouth is now in the order of half the natural flow. The basin is shown Figure 1-1. The in Orange-Senqu system is regulated by more than thirty one major dams and is a highly complex and integrated water resource systems with numerous large inter and intra basin transfers.

Figure 1-1: Orange – Senqu River Basin

1.2 Management and Environmental Context

1.2.1 General

Management issues, including environmental protection, conservation and sustainable development have to deal with problems relating to, both, water quantity and quality, potential conflicts between users, pollution sources from industry, mining, agriculture, watershed management practices and the need to protect ecologically fragile areas. The riparian countries have for some time recognized that a basin-wide integrated approach has to be applied in order to find sustainable solutions to these problems and that this approach must be anchored through strong political will. The development of this strong political will is one of the key initiatives of SADC, in particular the Revised Protocol on Shared

Watercourses and the establishment of the Orange-Senqu River Basin Commission (ORASECOM). These initiatives are intended to facilitate the implementation of the complicated principles of equitable and beneficial uses of a shared watercourse system. It is accepted by all countries that the management of water resources should be carried out on a basin-wide scale with the full participation of all affected parties within the river basin.

Water supply in terms both of quantity and quality for basic human needs is being outstripped by the demands within and outside of the basin. Meeting the water supply needs of rapidly growing towns and cities at the same time having sufficient water of an acceptable quality to meet existing and proposed irrigation and other demands (including environmental) further downstream is a challenge for planners and decision makers and stakeholders in the Orange-Senqu river basin.

1.2.2 ORASECOM

Southern Africa has fifteen trans-boundary watercourse systems including the Orange– Senqu system. The Southern African Development Community (SADC) has adopted the principle of basin–wide management of the water resources for sustainable and integrated water resources development. In this regard, the region recognizes the United Nations Convention on the Law of Non-navigational Uses of International Watercourses, and has adopted the "Revised Protocol on Shared Watercourse Systems in the SADC Region". Under this Revised Protocol, a further positive step has been the initiatives towards the establishment of river basin commissions in order to enhance the objectives of integrated water resources development and management in the region, while also strengthening the bilateral and multilateral arrangements that have been in existence for some time. The Orange–Senqu River Basin Commission (ORASECOM) which was established on 3 November, 2000 in Windhoek, Namibia. is a legal entity in its own right.

The highest body of the ORASECOM is the Council consisting of three permanent members, including one leader, for each delegation from the four riparian states. Support from advisors and ad hoc working groups can be established by the council. The main task of the Council is to "serve as technical advisor to the Parties on matters relating to the development, utilization and conservation of the water resources in the River System", but the council can also perform such other functions pertaining to the development and utilization of water resources as the partiers may agree.

1.3 Context of the Study and this Working Paper

1.3.1 GIZ Support to SADC and ORASECOM

The overall goal of the GIZ-supported 'Transboundary Water Management in SADC' programme is to strengthen the human, institutional, and organisational capacities for sustainable management of shared water resources in accordance with SADC's Regional Strategic Action Plan (RSAP). The programme, which GIZ implements on behalf of the German Federal Ministry for Economic Cooperation and Development (BMZ), and in

delegated cooperation with the UK Department for International Development (DFID) and the Australian Agency for International Development (AusAID), consists of the following components:

- Capacity development of the SADC Water Division
- Capacity development of the river basin organisations (RBO) and
- Capacity development of local water governance and transboundary infrastructure.

The activities of this Consultancy, "Support to Phase II of the ORASECOM Basin-wide Integrated Water Resources Management Plan", being undertaken by WRP (Pty) Ltd and Associates, contributes to Component 2 above. The work of Phase 2 comprises six work packages as briefly outlined in **Section 1.3.2.2** below

1.3.2 Support to Phase 2 of the ORASECOM Basin-wide Integrated Water Resources Management Plan

1.3.2.1 Objectives of the Overall Consultancy

The main objectives of this consultancy are to enlarge and improve the existing models for the Orange-Senqu Basin, so that they incorporate all of the essential components in the four Basin States and are accepted by each Basin State. These models must be capable of being used to meet the current and likely future information needs of ORASECOM. These needs will likely encompass additional options to achieve water security in each Basin State – including changing configurations for water supply and storage infrastructure - and ensure that ORASECOM is able to demonstrate that its operations are aligned with the principles embodied in the SADC Water Protocol.

1.3.2.2 The Six Work Packages

In order to contribute to the realisation of the above-mentioned objectives, the project includes six work packages as outlined in **Table 1-1**. The first of these work packages is central to Phase 2 of the IWRM Plan and will also be at the core of the final plan to be developed in Phase 3. In work package 1 the WRYM water resources simulation model is being updated and expanded to cover the entire basin.

3

Work Package	Main Objectives	Main Activities
WP 1: Development of Integrated Orange- Senqu River Basin Model	To enlarge and improve existing models so that they incorporate all essential components in all four States and are accepted by each State	 Extension and expansion of existing models Capacity building for experts and decision- makers Review of water balance and yields Design/initiation of continuous review process
WP 2: Updating and Extension of Orange-Senqu Hydrology	Updating of hydrological data, hands-on capacity building in each basin state for generation of reliable hydrological data including the evaluation of national databases,	 Assessment of Required Improvements to the Existing Gauging Networks. Capacity Development Extension of Naturalized Flow Data Review of Existing Data Acquisition Systems, proposals on basin-wide data acquisition and display system.
WP 3: Preparation and development of integrated water resources quality management plan	Build on Phase 1 initial assessment to propose water quality management plan, based on monitoring of agreed water quality variables at selected key points	 Establishment of protocols, institutional requirements for a water quality monitoring programme, data management and reporting. Development of specifications for a water quality model that interfaces with the systems models. Capacity building to operate the water quality monitoring system and implement the water quality management plan.
WP 4: Assessment of global climate change	Several objectives leading to assessment of adaptation needs	 Identification of all possible sources of reliable climate data and Global Climate Model downscaling for the Orange-Senqu Basin Scenario assessment of impacts on soil erosion, evapotranspiration, soil erosion, and livelihoods Identification of water management adaptation requirements with respect to observed and/or expected impacts on water resources Assessment of major vulnerabilities and identification of measures for enhancing adaptive capacities
WP 5: Assessment of Environmental Requirements	Several objectives leading to management and monitoring system responsive to environmental flow allocations	 A scoping level assessment of ecological and socio-cultural condition and importance Delineation into Management Resource Units and selection of EFR sites. One biophysical survey to collate the relevant data at each EFR site and two measurements at low and high flows for calibration. Assessment of the Present Ecological State and other scenarios Assessment of flow requirements, Goods and Services, and monitoring aspects.
WP 6: Water Demand management in irrigation sector	To arrive at recommendations on best management practices in irrigation sector and enhanced productive use of water	 Establish a standard methodology for collecting data on irrigation water applied to crops, water use by crops and crop yields; Document best management practices for irrigation in the basin and finalise representative, best-practice demonstration sites through stakeholder consultation Consider and assess various instruments that support water conservation/water demand management.

Table 1-1 Summary of Work Package Objectives and Main Activities

The other work packages are both self-standing and intended to provide inputs to an improved and more complete water resources simulation model for the whole basin. The model will be enhanced by a more complete hydrology (WP2), better and more complete water quality information (WP3), allowance for climate change impacts and adaptation (WP4), inclusion of environmental flow requirements at key points (WP5) and modelling of scenarios with improved water demand management in the key irrigation sector (WP6).

1.3.3 Background to Work Package 1 and this Working Paper

1.3.3.1 Work Package Objectives

The main objectives for this Work Package are to enlarge and improve the existing models to cover the total Orange River Basin and to capacitate representatives of each of the basin states to set up and use the models effectively.

1.3.3.2 Work Package Activities

- Assessment of the strengths and weaknesses of the existing models
- Extension and expansion of the existing models
- Provision of a clear assessment of any anticipated changes in the yield of each catchment, in a probabilistic manner
- Review the water balance for the Basin, (recording both the demand and supply components);
- Design and initiation of a suitable technical process for a continuous review (at least annually) of the water balance to identify and pre-empt potential future problems;
- Assist representatives from each of the four Basin States to set up the models in each country and ensure that ORASECOM staff in each basin state are able to use the models effectively

1.3.3.3 This Working Paper

This working paper provides feedback on the capacity building process and the setting up of the models in each of the countries. It also outlines the proposed continuous review process.

2 CAPACITY BUILDING PROVIDED

2.1 Introduction

At the time of the Inception Phase it was proposed to capacitate the basin state representatives/experts who would be responsible for the running of the WRYM and WRPM water resources models. The courses were to be presented at a hands-on technical level and the participants would be the people who are actually going to operate the models. Allowance was made to train two representatives from each country

During the course of the project, however, it became clear that it was critically important to ORASECOM that senior-decision makers also be exposed to the models and capacitated. They should be able to understand the principles of how the models work, what input information they need. In addition the training should highlight what results can be generated and how they can can be interpreted and used for both strategic planning and operational planning.

WRP offered to develop and present a customized decision-makers course over two days, in addition to the original week-long expert-level courses. Unfortunately many of the decision-makers were unable to attend the two-day decision-maker course with the result that an additional compressed one-day version was also presented which was well attended.

Expert level training took place in WRP's offices for participants from Lesotho, Botswana and South Africa. Due to the fact that no delegates from Namibia were able to attend the initial week-long course held in South Africa, an additional week-long course was also presented to Namiibian participants in Windhoek.

2.2 Expert Level Capacity Building

2.2.1 Introduction

Two courses were presented:

- Pretoria, 22 26 November 2010 attended by Botswana, Lesotho, South Africa and ORASECOM
- Windhoek, 14 17 February 2011 attended by Namibia and ORASECOM

Details of those who attended the courses are provided in the attendance register which is included in **Appendix A1**.

2.2.2 Course Contents

The following modules were presented:

- Module 1: The Integrated Orange-Vaal River System
- Module 2: Introduction to Water resources Modeling
- Module 3: Stochastic Streamflow and Yield
- Module 4: Defining a System Network

- Module 5: Defining System Operating Rules
- Module 6: Introduction to the Water Resources Integrated Management System (WRIMS)
- Module 7: Creating a new System Network
- Module 8: Application of the WRIMS
 - Case Study 1: Caledon-Modder System
 - Case Study 2: Polihali Dam
 - Case Study 3: Neckertal Dam

All modules included hands-on practical training sessions. In total, the course included 10 practical exercises covering the following areas:

- Using a basic reservoir model
- Interpreting yield-reliability curves
- Interpreting penalties
- Defining the system network
- Determining historical firm yield
- Determining system operating rules
- Evaluating development options
- Generating yield reliability curve
- Polihali Dam
- Neckertal Dam

The course programme is included in Appendix A1. The course presentations in "handout" format are provided in Appendix A2.

2.2.3 Manuals

Detailed manuals in electronic form (CD) were prepared prior to the training courses and provided to each of the participants. These manuals are also included on the work package CD and from the project website under Work Package 1.

2.2.4 Feedback from Participants

Feedback from the participants was very positive with the usefulness of the courses rated as either 4 or 5 out of 5 by all participants. The feedback forms are included in **Appendix A1**.

Comments and suggestions included the following:

- Course should be longer to include more practical examples
- More of these course will be very useful to include more water managers and decision-makers
- The software is a little complicated and further training would be useful

The need to carry out this type of capacity-building on a regular basis was strongly expressed. Clearly this is essential if each of the basin states is to maintain capacity and

ORASECOM should continue to play a leading role in ensuring that these capacity building courses continue at least annually.

2.3 Decision-maker Level Capacity Building

2.3.1 Introduction

Two courses were presented:

- Pretoria, 29 30 November 2010 attended by Botswana, Lesotho, South Africa and ORASECOM
- Pretoria, 25 January attended by Botswana, Lesotho, South Africa and ORASECOM

Namibia was unfortunately not able to send participants to either of the decision-maker courses. Details of those who attended the courses are provided in the attendance register which is included in **Appendix B1**.

2.3.2 Course Contents

The following modules were presented:

- Module 1: The Integrated Orange-Vaal River System
- Module 2: Overview of Water Resource Management
- Module 3: Water Resource Assessment
- Module 4: Water Resource Allocations
- Module 5: Management of Water Resources Systems
- Module 6: Intervention Planning

All modules included group discussion sessions.

The course programme is included in Appendix B1. The course presentations in "handout" format are provided in **Appendix B2.**

2.3.3 Feedback from Participants

Feedback from the participants was very positive with the usefulness of the courses rated as either 4 or 5 out of 5 by all participants. The feedback forms are included in **Appendix A1**.

Comments and suggestions from the two day course included the following:

- More such courses should be arranged in the future
- A high level course should be offered to Permanent Secretaries/Director Generals who are closer to Ministers who ultimately make decisions
- More of these training courses including more senior decision-makers would be good
- More time could be spent on economic (socio-economic) considerations

From the one day course, comments and suggestions included the following:

- Interesting but more time needed
- Overall, very good workshop, may need to programme more frequent training at this level
- Excellent course
- Too much information in a short time, 1.5 days would be better
- The model is highly needed, essential for proper management of Orange-Senqu River basin. It must be endorsed by the four member states as a universal tool for decision-making
- This made the task of designing institutional and governance arrangements easier

The need to carry out this type of capacity-building on a regular basis was expressed as well as the need to bring in even more senior decision-makers

Clearly this is essential if each of the basin states is to maintain capacity and ORASECOM should continue to play a leading role in ensuring that these capacity building courses continue at least annually.

3 SETTING UP OF THE MODELS IN EACH COUNTRY

3.1 Expert Level Capacity Building purposes

The training courses on the Water Resource models included hands-on technical level components. For this purpose it is required to use one or the other water supply system to be defined in the models and analysed as part of the capacity building programme. The Orange River System was selected for this purpose, as all the basin states are familiar with this subsystem or at least with some parts of the sub-system. This sub-system is also part of the final complete Orange-Senqu-Vaal Integrated system model to be delivered to each basin state as a final product from this study.

The most up-to-date data sets for the Orange River sub-system were therefore installed as part of the WRIMS on several PC's or laptop's as required by the different basin states. The software installed as part of the capacity building courses included:

- The latest IMS version of the WRYM
- The WRYM data sets for the whole Orange River System (This includes the Senqu, Upper Orange, complete Riet-Modder, the Lower Orange as well as the Fish in Namibia) The total demand that need to be supplied to the Eastern Cape is imposed on the Orange system as one of the major demand centres. The Eastern Cape subsystem is, however, not modelled in detail as part of this setup. This was the latest WRYM data set updated as part of this study. It was not the final product from this study at the time as some changes still need to be included.
- Only the practical on the Caledon-Modder sub-system included the IMS Visio lay-out at the time.

The Procedure Manual for the Water Resource Models was provided in electronic format to all the attendees at the two courses.

3.2 Final extended and improved WRYM and WRPM data sets

The final water resource models will be installed on MPU's, one per basin state. The software will include:

- The latest IMS version of the WRYM
- The WRYM data sets for the Orange/Senqu/Vaal integrated system will include two main sub-systems:
 - The Vaal River System comprising the whole Vaal Basin but also including the Tugela transfer.
 - The Orange-Senqu System similar to the one installed as part of the training, covering the rest of the Orange-Senqu basin not included in the Vaal River system.
- The complete set of updated natural flow data (hydrology data) for the entire Orange-Senqu basin.

- The final WRYM data sets for both the Vaal and the Orange will include the IMS Visio lay-outs
- The WRPM setup for the complete Orange-Senqu basin will be an integrated system including the total combined Integrated Vaal with the Orange-Senqu system. This means that all the existing sub-systems used to support the Vaal will also be part of this system.
- The latest WRPM Fortran executable as the IMS version of the WRPM is not yet fully operational. This development (inclusion of WRPM in IMS) is being carried out under a separate DWA (RSA) project and is currently in the testing phase of the WRPM IMS, which might only be completed towards the end of 2011.
- For the WRPM data sets the appropriate schematics will be provided in hard copy and in electronic format

The final hydrology and WRYM data sets will, on request, be imported into the already installed WRIMS available on the basin state's PC's and Laptops used during the capacity building courses.

The Procedure Manual for the Water Resource Models will be provided in hard copy and in electronic format to each of the basin states.

3.3 Future updates

The data sets for the WRYM and in particular for the WRPM are continuously improved and updated over time. The WRPM data sets are used on an annual basis for operating analysis carried out for the Integrated Vaal, the Orange River Project (Gariep & Vanderkloof), and the BloemWater sub-system. The most important demands, return flows and infrastructure changes for these sub-systems within the overall Orange-Senqu-Vaal integrated system is therefore updated on an annual basis.

Updates will most probably in future also be made to these models by all the basin states. It will therefore be of utmost importance that all these updates be shared by the basin states and that a fully updated master set be available to all basin states. This most up to date and complete WRYM and WRPM sets for the Orange-Senqu basin should be available from a central office, which is accessible to all basin states. It is proposed that ORASECOM should be the custodian of the Orange-Senqu Basin models to allow easy access and control over basin wide updates to the models.

Development on the IMS (WRYM and WRPM) is an ongoing process which is carried out by DWA RSA. Updates of the WRIMS (model without data files) can be obtained free of charge from DWA RSA and should form part of the annual update of the Orange-Senqu basin Models.

4 PROCESS OF CONTINUOUS REVIEW

4.1 Introduction

The WRYM and WRPM models (WRIMS) have been used by the Department of Water Affairs in South Africa for many years now for modelling of the Orange-Senqu and other systems in South Africa. During Phase 2 of the project, experts and decision-makers in the other three basin states were trained on the use of these models in order that they would be more able to discuss basin-wide water resources planning and management issues on an equal footing. This is just the first step towards a process of continuous review jointly involving all four basin states.

If the momentum gained during Phase 2 is maintained, it is essential that a regular review process be put in place and that ORASECOM Secretariat plays a leading role in the coordination of this review, as well as participating in it at the expert level.

During steering committee meetings this issue has been discussed and there is general agreement that the review process is an annual one.

It is proposed that the review includes three components

- Capacity review and needs assessment
- Verification and reviews of updates
- Joint review of water resources in the basin

4.2 Capacity Review and Needs Assessment

As already indicated, the courses presented during phase 2 were only a start. There may be a need to present more advanced training course as well as to repeat the introductory courses for new experts and decision-makers. Every effort should be made to ensure that an acceptable level of capacity is maintained on a continuous basis. For this reason it is proposed that each country submits its training needs to the secretariat early in the year so that training courses can be arranged for immediately prior to the basin water resources review process proposed under **Section 4.3**. In this way the basin water resources review can proceed immediately following this training. DWA (RSA) arranges similar training courses from time to time which can also be utilised for this purpose.

4.2.1 Verification and reviews of Updates

As already indicated in **Section 3**, the data sets for the WRYM and in particular for the WRPM are continuously improved and updated over time. This includes modifications to infrastructure and demands which are already being made by DWA South Africa on a regular basis. As the other basin states get more involved in the process and start to use the model they will also be making changes and modifications in their respective parts of the basin. It will therefore be of utmost importance that all these updates be shared by the basin states and that a fully updated master set be available to all basin states. This most up to date and complete WRYM and WRPM sets for the Orange-Senqu basin should be available from a

central office, which is accessible to all basin states. It is proposed that ORASECOM should be the custodian of the Orange-Senqu Basin models to allow easy access and control over basin wide updates to the models. Verification of the updating could be carried out as part of the continuous review process.

Development on the IMS (WRYM and WRPM) is an ongoing process which is carried out by DWA RSA. Updates of the WRIMS (model without data files) can be obtained free of charge from DWA RSA and should form part of the annual update of the Orange-Senqu basin Models

4.3 Basin Water Resources Review

The WRPM will be used to evaluate and update the water balance of the Orange River Basin and the various sub-systems within the basin on an annual basis. Currently this process already includes the Integrated Vaal River system, the Orange River Project and the Bloemwater (Caledon Modder) sub-system. The analysis for these sub-systems are carried out in May each year, as most of the summer runoff had by then entered the storage dams. It is therefore proposed that the basin review process should follow after the changes and updates for the May analysis were completed, which should be early in June each year. The ORASECOM Secretariat should be involved in this process. The necessary model runs should be performed and the results made available prior to the convening of a Review Session. This could take place in any one of the basin States but should be organised by the ORASECOM Secretariat.

Results from the WRPM that will be used as part of this process will typically include the following for the selected major and important water supply systems:

- Storage projections of the major and important storage dams.
- Demand and supply projections
- Possibility of curtailments now and in future by using curtailment plots.
- Flows at key points in the system.
- The time when intervention options is required to maintain the supply to users at the required assurance.
- Evaluation of proposals coming from the member states

4.4 Proposed Process

All these aspects will be presented to and discussed with the basin states representatives during a typically two to three day meeting. The meeting should be attended by both experts and decision-makers from each of the basin states, the ORASECOM Secretariat and the experts contracted to do the model runs prior to the review meeting.

The objective of the review process should be for all states to have a clear understanding of the water resource status for the year ahead, and of the management and operational options that are likely to be considered

5 APPENDICES

Appendix A: Capacity Building for Experts

Appendix A1: Course Programmes, Attendance and Feedback

Appendix A2: Course Material

Appendix B: Capacity Building for Decision-makers

Appendix B1: Course Programmes, Attendance and Feedback

Appendix B2: Course Material

APPENDIX A1:

Workshop Programmes, Attendance Registers and Feedback Forms

Workshop Programmes

ORASECOM Water Resource Modelling Training Course 22 – 26 November 2010

Schedule								
Start time	Duration							
		Day 1						
08:30	00:15	Welcome						
		Module 1: The Integrated Vaal River System						
08:45	00:30	1. Description of the Study Area						
09:15	00:30	2. Description of the operating rules						
09:45	00:15	Tea break						
		Module 2: Introduction to Water Resource Modelling						
10:00	00:30	1. The Water Resources Planning Processs						
10:30	00:30	2. Modelling Water Resources Systems						
11:00	00:30	3. Basic modelling principles						
11:30	00:30	4. Definition of terms						
12:00	00:30	5. <u>Practical 1</u> : Using a basic reservoir model						
12:30	00:45	Lunch break						
10.15	00.45	Module 3: Stochastic Streamflow and Yield						
13:15	00:15	1. Background						
13:30	00:15	2. Streamflow generation						
13:45	00:15	3. Stochastic yield analysis						
14:00	00:15	4. <u>Practical 2</u> :Interpreting yield-reliability curves						
14.45	00.45	Wodule 4: Defining a system network						
14:15	00:15	1. Creating a representative network model						
14.30	00.15	2. Basic building blocks						
14.40	00.15	3. General data requirements						
15.00	00.15	Modulo 5: Defining System Onersting Bules						
15.15	00:15	1 Packground						
15:30	00.15	2. Using "populties" to define operating rules						
16:00	00:30	2. Using penalties to define operating rules						
16:30	00.50	Close						
10.00		01036						
		Day 2						
08:30	00:15	Welcome: Review of Day 1						
		Module 6: The Integrated Orange Vaal River System (Orange focus)						
08:45	01:00	1. Description of the Study Area						
09:45	00:20	2. Improvements extensions - ORASECOM Study						
10:05	00:25	3. Description of Operating Rules Part 1						
10:30	00:15	Tea break						
		Module 6: The IOVRS (Orange focus) Continue						
10:45	00:25	4. Description of Operating Rules Part 2						
11:10	00:45	5. Hydrology used in current models						
11:55	00:30	6. System Demands						
12:25	00:45	Lunch break						
10.10		Module 6: The IOVRS (Orange focus) Continue						
13:10	00:30	7. Water resouce Infrastructure						
13:40	00:45	8.Annual Opperating Analysis						
14:25	00:25	9 Future updates						
14:50	00:15	lea break						
15:05	00:15	Discussion						
15:20	00:05	Close						
	Note:	woodules / to 11 part of the Vaal Training group presentations on hydrology						

		Day 3
08.20	00:15	Welcome: Review of Dev 2
00.30	00.15	Weicome: Review of Day 2
		Wodule 12: Introduction to the WRIMS
08:45	00:60	Introduction & Background to the WRYM
09:45	00:30	Setting up a study & the hydrology directory
10:15	00:15	Tea break
10:30	02:00	Navigating the user interface: model inputs
12:30	00:45	Lunch break
13.15	00.30	Network diagram
13:45	00:30	Running the model (historics)
14:15	00:45	Viewing results (histories)
14.10	00:45	Tas break
15.00	00.15	
15:15	00:30	Running the model (stochastics)
15:45	00:30	Viewing and Interpreting results (stochastics)
16:15		Close
		Day 4
08:30	00:15	Welcome: Review of Day 3
		Module 13: Introduction to the WRPM
08.45	00.15	1. Pole of the W/PDM
00.40	00.15	2. Medel Structure
09.00	00.15	2. Medelling engreesh
09:15	00:15	3. Wodeling approach
09:30	00:15	4. Overview of model results
09:45	00:30	Module 14: Interpretation of WRPM Results
10:15	00:15	Tea break
		Module 15: Water Resource Allocation Procedure
10:30	00:15	1. Water User Criteria
10:45	00:30	2. Short-term vield reliability curves
11.15	00.45	3 Allocation and curtailment
12.00	00:30	A Practical A: Water resource allocation
12:00	00:45	4. <u>I lactical 4</u> . Water resource anocation
12.30	00.45	Lunch Dieak
13:15	00:30	Module 16: water Quality Modelling
		Module 17: Configuration of the WRPM
13:45	00:15	1. General input data requirements
14:00	00:30	2. Overview of WRPM input data files
14:30	00:15	2. Overview of WRPM input data files
14:45	00:15	Module 18 : Additional Control Features
15:00	00:15	Tea break
15:15	00:30	Module 19 : WRPM Plot Programmes
15:45	00:30	Module 20 : Basic Applications of the WRPM
16:15	00.00	
10.15		Close
	L	
		Day 5
08:30	00:15	Welcome: Review of Day 4
		Module 21: Application of the WRIMS
		Case Study 1: Caledon Modder Sub-system
08:45	00:30	1. Background
09:15	01:00	2. Determining historic firm Yield
10.15	00:15	Tea break
10.10	00.10	Case Study 1: Caledon Modder Sub-system Continue
10.20	00.20	2 Evoluting evetom energing rules
10.50	00.30	5. Evaluating system operating rules
11:00	01:00	4. Evaluating development options
12:00	00:30	5. Generating yield reliability curve
12:30	00:45	Lunch break
		Case Study 2: Polihali Dam
13:15	00:20	1. Background
13:35	01:00	2. Practical
14:35	00.15	Tea break
11.00	00.10	Module 22: Creating a new system network
14.50	00.30	1 Background
14.00	00.30	2. Prostical
10.20	01.00	
10:20		Ciose

ORASECOM Water Resource Modelling Training Course Namibia 14 – 17 February 2011

Schedule		Training module							
Start time	Duration								
		Day 1							
10:00	00:15	Welcome							
10:15	00:15	Introduction							
40.00	04.00	Module 1: The Integrated Orange/Senqu-Vaal River System							
10:30	01:00	1. Description of the Study area							
11:30	00:15	2. Improvements extensions - ORASECOM Study							
11.45	01:00	3. Description of operating rules							
12.40	00.15	4. Group discussion							
13.00	00.45	Lunch Diedk Module 2: Introduction to Water Resource Modelling							
13.45	00.30	1 The water recourses planning processes							
17:45	00.30	Medelling water resources systems							
14.15	00:30	2. Modelling water resources systems							
15:15	00:15	Tea break							
15:30	00:30	4. Definition of terms							
16:00	00:30	5. Practical 1: Using a basic reservoir model							
16:30	00:15	6. Group discussion							
16:45		Close							
		Day 2							
08:30	00:15	Welcome: Review of Day 1							
		Module 3: Stochastic Streamflow and Yield							
08:45	00:15	1. Background							
09:00	00:15	2. Streamflow generation							
09:15	00:15	3. Stochastic yield analysis							
09:30	00:15	4. Practical 2: Interpreting yield-reliability curves							
09:45	00:15	Tea break							
		Module 4: Defining a System Network							
10:00	00:15	1. Creating a representative network model							
10:15	00:15	2. Basic building blocks							
10:30	00:15	3. General data requirements							
		Module 5: Defining System Operating Rules							
10:45	00:15	1. Background							
11:00	00:30	2. Using "penalties" to define operating rules							
11:30	00:30	3. <u>Practical 3</u> : Interpreting penalties							
12:00	00:45	Lunch break							
10.45	00.00	Introduction to the WRIMS							
12:45	00:60	Introduction and background to the VVKYM Setting up a study and bydrology directory							
10.40	00:30	 Setting up a study and hydrology directory Tea break 							
14.10	02:00	3 Navigating the user interface: model inputs							
16:30	00:30	4 Network diagram							
17:00	00.00	Close							

		Day 3
08:30	00:15	Welcome: Review of Day 2
		Module 6: (cont.)
08:45	00:30	5. Running the model (historical)
09:15	00:45	6. Viewing results (historical)
10:00	00:15	Tea break
10:15	00:30	7. Running the model (stochastic)
10:45	00:30	8. Viewing and interpreting results (stochastic) Module 7: Creating a New System Network
11:15	00:30	1. Background
11:45	01:00	2. Practical 4: Defining the system network
		Module 8: Introduction to the WRPM
12:45	00:15	1. Role of the WRPM
13:00	00:15	2. Model structure
13:15	00:45	Lunch break
14:00	00:15	3. Modelling approach
14:15	00:15	4. Overview of model results
14:30	00:15	5. Group discussion
		Module 9: Application of the WRIMS
		Case Study 1: Caledon-Modder Sub-system
14:45	00:30	1. Background
15:15	00:15	Tea break
15:30	01:00	2. <u>Practical 5</u> : Determining historical firm yield
16:30	00:30	3. <u>Practical 6</u> : Evaluating system operating rules
17:00		Close
		Dev 4
09.20	00:15	Day 4
08.30	00:15	Welcome: Review of Day 3
		Module 9: (cont.)
00.45	01.00	Case Study 1: Caledon Modder Sub-system (cont.)
00.45	01.00	4. <u>Practical 7</u> . Evaluating development options
10:15	00.30	5. <u>Practical o</u> . Generating yield reliability curve
10.15	00.15	Case Study 2: Poliheli Dem
10.20	00.20	Case Study 2: Polinali Dam
10.50	00.20	2. Practical O: Balibali Dam
10.50	01.00	2. <u>Flactical 9</u> . Politial Dam
11.50	00.15	L Bookground
12:05	00.15	2. Practical 10: Neckartal Dam
12.00	00.45	Croup discussion
12.00	00.15	
13.50	00.40	Close
15.50		
		1

Attendance Registers

Atha	droup company	ement Plan					E-mail	Pentatliz Ogmail.com	guidevanlengenheur	rapule. Pule Conart - Com	muferipomaul/gound	merzherwe yatur, com			
		ed Water Resources Manag			14-17 February 2011		Cell phone	+264 \$1 28 00070	081 1244130	4278223304669	1264 812500094	081-6881391			
	e Register	COM Basin-wide Integrate	d Model - Orange		Date:	ient	Telephone	061 208 7026	061 208 7257	427136430834	061-208 7191	B61-2087253			
d cooperation with:	Attendanc	Phase 2 of the ORASEC	n Water Resources Yiel	é & Gerald de Jager		Pres	Organization	MAWF	MAWF	ORAFECOM	Mawf	NAWE - HURDLOGH	-		
missioned by: In Delegate Faderal Ministry for Economic Cooperation		Support to	Training o	ers: Manie Mar	Namibia		Position	Assistant Hydrologist	HEAD . HY DROLOCY	KIATER RESounce	hydrologist-chiet	HYDROLOGEST - SNR			
Comparison of the second secon		Course:		Present	Venue:		Name	Unandaps Lazanus	GUIDO VAN LANGENHOVE	Reparce Prele	Pauline Muferi	WALTO METZLER			

The little

P:\External_Training\RR\P0001_WRM Training\Attendance Register ORASECOM-Water Resources Yield Model - Orange -Namibia.doc 09/02/2011

Last updated:
AMA		ment Plan	Pledons:			E-mail	nenal dury, 500. (S	mole li' , sulo Q yo hor, lon				
0		d Water Resources Manage	Bennie Haasbroek /	22-26 November 2010	R 29. C	Cell phone	72665849924	+ 266 63283682				
	e Register	COM Basin-wide Integrate	usan Swart, Caryn Seago,	Date:	sent	Telephone	1266 22317991	T 26 6 223 25983				
d Coopere. Ath: aid Martine Gerement Al Pregram	Attendanc	Phase 2 of the ORASE n Water Resources Yiel	Rooyen, Manie Maré, S	Ltd, Pretoria Office	Pre	Organization	antosai - Aul	DWA-LESCHO				
In Delegate In Delegate Fedurel Ministry for Economic Cooperation		Support to Training o	ers: Pieter van	WRP(Pty)		Position	AVANNESIS 7	HUDROLOGIST				
Community of the second		Course:	Present	Venue:	-	Name	LESHORCE NEND	Molet. Pule		A	~	

ALL LINA

\\WRP01\RedirectedFolders\RianaR\My Documents\My Pictures\Attendance Register ORASECOM-Water Resources Yield Model - Orange.doc Last updated: 22/11/2010

Feedback Forms

Commissioned by:

In Delegated Cooperation with:

UKaid

Federa for Ecc

qtz

leral Ministry Economic Cooperati

1 is

Support to Phase 2 of the ORASECOM Basin-wide Integrated Water Resources Management Plan

Training on Water Resources Yield Model -Orange

14 - 17 February 2011 Namibia

Feedback Form

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

Name (optional): _____ GUIDO VAN LANGENHOVE

Course: WRYM

Date: 17/02/2011

Rate the following on a scale of 1 (poor) to 5 (excellent):

Venue	1	2	3	4	5	
Food Quality	1	2	3	4	5	
Event speakers						
Manie Maré	1	2	3	4	5	
Gerald de Jager	1	2	3	4	5	
Quality of information	1	2	3	4	5	
Usefulness	1	2	3	4	5	
Meeting your needs	1	2	3	4	5	
Overall quality of the workshop	1	2	3	4	5	

Any comments or suggestions:

SHOULD BE LONGER TO INCLUDE MORE PRACTICALS

A Miya Group Company

Thank you for your feedback

UKaid

Support to Phase 2 of the ORASECOM Basin-wide Integrated Water Resources Management Plan

Training on Water Resources Yield Model - Orange

14 - 17 February 2011 Namibia

Feedback Form

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

Name (optional): WALTO C. METZLER

Course: WRYM

Date: 14-17 FEBRUARY ZOI

Rate the following on a scale of 1 (poor) to 5 (excellent):

Venue	1	2	3	(4) 5
Food Quality	1	2	3	4 5
Event speakers				
Manie Maré	1	2	3	4 (5)
Gerald de Jager	1	2	3	4 5
Quality of information	1	2	3	4 5
Usefulness	1	2	3	4 5
Meeting your needs	1	2	3	4 5
Overall quality of the workshop	1	2	3	4 5

Any comments or suggestions:	0
Looking formand to update and	
more an Neckarter and Lower O	vo-ege
Hydroly.	

Thank you for your feedback

Support to Phase 2 of the ORASECOM Basin-wide Integrated Water Resources Management Plan

Training on Water Resources Yield Model - Orange

14 - 17 February 2011 Namibia

Feedback Form

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

Name (optional):

Course: ORASECOM KLATEL RESOURCE MEDELLENEG

Date: 14-17 FEBRUARY 2011

Rate the following on a scale of 1 (poor) to 5 (excellent):

Venue	1	2	3	4	5	
Food Quality	1	2	3	4	5	
Event speakers						
Manie Maré	1	2	3	4	5	
Gerald de Jager	1	2	3	4	5	
Quality of information	1	2	3	4	5	
Usefulness	1	2	3	4	5	
Meeting your needs	1	2	3	4	5	
Overall quality of the workshop	1	2	3	(4)	5	

Any comment	s or sug	gestions:			۲	
MORE	OF -	THESE	will	BE	VERY	6
Lesterul	10	inche	DE M	ORÉ	WATEL	_
MANAGER	es é	DECISI	on M	AKER	8	

Thank you for your feedback

Support to Phase 2 of the ORASECOM Basin-wide Integrated Water Resources Management Plan

Training on Water Resources Yield Model - Orange

14 - 17 February 2011 Namibia

Feedback Form

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

Name (optional): Unandapo Lazarus

Course: Water Resources yield Model - Orange

Date: 14-17 February 2011

Rate the following on a scale of 1 (poor) to 5 (excellent):

Venue S	1	2	3	4	5
Food Quality	1	2	3	4	5
Event speakers					
Manie Maré	1	2	3	4	5
Gerald de Jager	1	2	3	4	5
Quality of information	1	2	3	4	5
Usefulness	1	2	3	4	5
Meeting your needs	1	2	3	4	5
Overall quality of the workshop	1	2	3	4	5

Any c	omments o	or sugges	stions:					0	
The	software	sts .	alittle	Cov	mplico	ited	sut		_
thats	only	maybe	due	to	AL-P	fact	that		-
all	this is	new	40	me					

Thank you for your feedback

Support to Phase 2 of the ORASECOM Basin-wide Integrated Water Resources Management Plan

Training on Water Resources Yield Model - Orange

14 - 17 February 2011 Namibia

Feedback Form

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

Name (optional): _

Cours	e:W	RYM		
Date:	17	February	2011	
		J		

Rate the following on a scale of 1 (poor) to 5 (excellent):

Venue 500d	1	2	3	4	5
Food Quality Good	1	2	3	4	5
Event speakers					
Manie Maré	1	2	3	4	5
Gerald de Jager	1	2	3	4	5
	1	2	\bigcirc		5
Quality of Information	1	2	9	4	5
Usefulness	1	2	3	4	5
Meeting your needs	1	2	3	4	5
Overall quality of the workshop	1	2	3	4	5

Any comments or suggestions:

A Miya Group Company

> Thank you for your feedback

APPENDIX A2: Course Presentations

Objectives (2 of 2)

Achieved by means of:

- Conceptual presentations
- Demonstrations
- Practical's on hand experience
- Group discussions

Objectives (1 of 2)

Overview of:

- Study area and related sub-system
- Improvements by ORASECOM Study
- Description of operating rules IOVS
- Water resource assessment
- Water resource allocation
- Installing IMS and related data sets
- Training on use of IMS WRYM
- Brief introduction to WRPM

DWAF (May 2006)

DWAF (May 2006)

Introduction (2 of 2)

- Scientific foundation analysis techniques embedded in models
 - Reviewed by external specialists National & International
 - Tested and evaluated in various water resource studies subjected to external reviewers
 - Several technical papers local & international symposia and technical publications

Introduction (1 of 2)

- Development Suite of WRSM mid 1980's
 - Water Resource Development planning
 - Water Resource Operations planning
- Models & related analytical techniques were instrumental in making
 - Optimal decisions large capital projects
 - Maximising benefits through system operational analyses

Description Modelling System

- Consists of suit of analytical tools
 - Hydrological data preparation software, rainfall runoff simulation model, water quality modules and stochastic time series generation procedures
 - WRYM to determine long and short-term yield characteristics of water resource
 - WRPM the main decision support system

WRYM & WRPM (1 of 2)

- Consists of four main modules
 - Main simulation engine network solver

 a) defines system as network of reservoirs, rivers conveyance infrastructure abstractions
 b) Implementing operating rules by means of data entries
 - Rigorous stochastic streamflow generation module
 - Drought curtailment algorithm (WRPM only)
 - Water Quality module (WRPM only)

Verification Analysis Techniques and Modelling System (1 of 2)

Pegram (1983) Providing an overview of the stochastic hydrology methodology

DWAF (1986) Report presenting details of the multisite stochastic model – Vaal River System

- McKenzie & Allan (1990) Illustrates the application of the risk based analysis methods Vaal System
- Pegram & McKenzie (1991) Paper describing the "Synthetic streamflow generation in VRS study"

O'Connet et al.(1991) Paper on "Multisite synthetic streamflow modelling in a semi arid region

WRYM & WRPM (2 of 2)

Integrating various interdependent Water Resource management aspects

- Inter-basin transfer rules for major conveyances Eastern sub-system, Thukela-Vaal, LHWP etc.
- Increasing water requirements & return flows multiple users throughout IOVS system
- Hydro-power requirements & related operating rules taking into account other users & envirmt
- Commissioning characteristics new infrastruct Filling of Polihali Dam and effect on the subsequent risk of supply from Vaal and Orange

Verification Analysis Techniques and Modelling System (2 of 2)

Van Niekerk & Basson (1993) Paper describing the application of probabilistic based management

Basson et al. (1994) Book on "Probabilistic management of Water Resources and Hydropower Systems"

DWAF (2008) Procedural Manual for the Water Resources Simulation Model (WRSM)

DWAF (1999) Main Report of the Orange River Development Project Replanning Study reviewed by a panel of specialists

Application History of Model in Vaal & Orange River System (1 of 3)

- IVRS WRPM in use since 1989 providing WR decision support info for development & operational planning by RSA DWA
- WRPM configured for Orange River System in 1998 as part of Orange River System Analysis study
- Over past 2 decades models were refined & updated to represent physical system as realistically as possible
- In 2004 the Orange System Model & the IVRS Model was combined into one large integrated system

Application History of Model in Vaal & Orange River System (3 of 3)

- DWA 2009 Water for Growth Development Framework – Based on comprehensive investigations of all major WR systems in SA. - Water availability & supply info were determined by simulation models
- Phase II of ORASECOM WR Management Plan study.
 - Models will be updated extended & refined
 - Training provided for operators & decision makers in basin states
 - Copies of final updated model provided to all basin states

Application History of Model in Vaal & Orange River System (2 of 3)

IVRS WRPM in use since 1989 providing WR decision support info for development & operational planning by RSA DWA

- WRPM configured for Orange River System in 1998 as part of Orange River System Analysis study
- Over past 2 decades models were refined & updated to represent physical system as realistically as possible
- In 2004 the Orange System Model & the IVRS Model was combined into one large integrated system

IVRS Major Reservoirs							
Catchment	Dam Name	Gross Area (km²)	Natural MAR (&) (million m³/a)	FSC ^(\$) (million m ³)	FSC as % of Total System Storage		
Komati	Nooitgedacht	1 588	66	78	0.7		
Komati	Vygeboom	3 132	194	83	0.8		
Usutu	Morgenstond	548	56	101	0.9		
	Westoe	533	44	61	0.5		
	Jericho	219	24	60	0.5		
Assegaai	Heyshope	1 120	129	453	4.1		
Buffalo	Zaaihoek	622	100	185	1.7		
Thukela	Woodstock	1 171	433	373	3.4		
-	Grootdraai	7 995	458	350	3.2		
Vaal	Sterkfontein	195	18	2 617	23.6		
Vaai	Vaal	38 638	1 977	2 610	23.5		
	Bloemhof	108 125	3 315	1 240	11.2		
Congu	Katse	1 867	552	1 950	17.6		
Senqu	Mohale	938	305	947	8.5		
Тс	otal :			11 109	100.0		
Note:	(&) : MAR = Mean A	nnual Runoff					
	(\$) : FSC = Full Supply Capacity						

Orange River System

Orange River System sub-divided into 3 main sub-systems and several small subsystems:

- 1 Lesotho Highlands (Katse & Mohale)
- 2 Caledon Modder (Welbedacht,
- Knellpoort, Rustfontein, Mockes & Groothoek dams)
- 3 Orange River Project (Gariep & Vanderkloof dams)

Orange River Project (2 of 4)

Main demands upstream of Vaal confluence Hydro-power generation at both dams 2200 mcm/a Gariep – 2100 mcm/a Vdklf Orange Fish Transfer Scheme 650 mcm/a Vanderkloof Canals Scheme 330 mcm/a Orange Vaal Transfer Scheme 140 mcm/a Abstractions directly from river: – Irr & Towns

Orange River Project (3 of 4)

Main Rural/Urban demands Lower Orange Karos-Geelkoppen Rural WS Scheme Kalahari-West Rural WS Scheme

- Pelladrift WS Scheme
- Springbok Regional WS Scheme
- Urban, Industrial & Mining Prieska, Upington, Alexander Bay, Oranjemund, Rosh Pinah, Noord Oewer, etc.

Orange River Project (4 of 4)

Main irrigation Schemes Lower Orange Boegoeberg Scheme Upington Scheme

Kakamas Scheme

Onseepkans

Vioolsdrift

- Noordoewer & Aussenkehr
- Irrigation abstractions directly from river

•2011/03/03

Improvements (2 of 4)

Re-calibration of hydrology – Caledon, Upper Orange, Fish River Namibia Adding hydrology for following subcatchments:

Inclusion of Lesotho Lowlands Identified Schemes – Hlotse, Hololo, Makhaleng & Metolong Dam

Updated hydrology for Usutu & Komati subsystems – Obtained from two separate studies

Improvements (3 of 4)

Molopo sub-system details:

RSA – Lotlamoreng, Modimolo & Disaneng dams also Kuruman, Molopo eye & others

Namibia – Otjivero, Daan Viljoen, Tilda
 Viljoen, Nauaspoort & Oanob dams

Ongers sub-system – Smartt Syndicate Dam Sak Hartbees sub-system – Rooiberg,

Modderpoort & Vanwyksvlei dams

Lower Orange Namibia - Dreihuk

Improvements (4 of 4)

Demand & demand projections:
Latest from Annual operating analysis IVRS & Orange System
Towns – All town study projections
Updated irrigation data from ORASECOM Irrigation task

LHWP Operating Rules

Releases to RSA based on agreed schedule phased in over time. Reached the maximum transfer volume 2009 – 780 mcm/a No releases to support downstream dams

IFR releases from Mohale and Katse

Caledon Modder Operating Principals (1 of 2)

Maintain Assurance of Supply

Primary objective of the operation of CMS is to maintain the assurance of supply to users

Restriction of Demands

 The operation of the CMS is based on the principle that demands are restricted during severe drought

Restriction of Demands

Objective is to reduce supply to less essential use to protect the assurance of supply for more essential use

The basis on which restrictions are implemented is defined by means of a user priority classification definition

Priority Classification Caledon Modder Sub-system

	% of the water demand to be supplied						
Category	1: 200 year	1: 100 year	1:20 year				
	(99.5%)	(99%)	(95%)				
Irrigation	10	40	50				
Urban	50	30	20				
Losses	100	0	0				
Environmental	68	0	32				
X		and the second s					

Caledon Modder operating rule

Bloemfontein is supplied with water from it's resources in the following order (continue):

- 6 Knellpoort below 60% start pumping from Tienfontein
- 7 When not sufficient water in Caledon start to use 40% in Rustfontein
- 8 Remaining 80% in Mockes
- 9 Remaining 60% in Knellpoort

ORP Operating Principals (1 of 2)

Maintain Assurance of Supply

Primary objective of the operation of ORP is to maintain the assurance of supply to users

Hydro Power Operating Rules

Secondary objective is to implement rules that will maximize the hydro-power benefit without jeopardizing the assurance of supply to the users.

ORP Operating Principals (2 of 2)

Restriction of Demands

- The operation of the Orange River Project (Gariep and Vanderkloof dams) is based on the principle that demands are restricted during severe drought
 - Objective is to reduce supply to less essential use to protect the assurance of supply for more essential use
 - The basis on which restrictions are implemented is defined by means of a user priority classification definition

2	Priority Classification
	ORP Sub-system (% basis)

	% of the water demand to be supplied				
Category	1: 200 year	1: 100 year	1:20 year		
	(99.5%)	(99%)	(95%)		
Irrigation	10	40	50		
Urban	50	30	20		
Losses	100	0	0		
Environmental	68	0	32		
ST		~ 2.1			

ORP Operating Rules

Gariep Dam

- Releases through Orange/Fish tunnel based on Operational model
- Releases into the river also used to generate HP
- River releases according to inverse of the downstream demand pattern
- Additional releases if surplus allocated for HP Additional releases for HP if water level above storage control curves

Orange and Vaal System Link

Orange and Vaal River systems are operated separately

The only links are:

- The transfers from the Sengu to the Vaal
- These transfers is fixed and independent of the water supply situation in the Orange d/s of the LHWP or in the IVRS

Spills from the Vaal to the Orange

- Operating rule of IVRS minimizes spills from the Vaal into the Orange. Spills from the Vaal do however enter the Orange during periods of high runoff and as result of operating losses and
- irrigation return flows in the Lower Vaal.

Small Orange sub-systems

- Kalkfontein, Krugersdrift, Tierpoort, Groothoek, Rooipoort, Smartt Syndicate, Naute, Hardap,etc
- These dams use an in-house rule in practice In current WRPM – Supply demand until dam failure occur then supply whatever is available
- Proper scientific operating rules to be developed
- Hardap in Namibia operating rule was developed
| Priorit
Dai | y Classi
m Sub-s | fication
system (% | Hardap
basis) |
|------------------|---------------------------|-------------------------------|-----------------------------|
| | Priority Cla | ssification & Assurance | e of Supply |
| User Category | Low
80%
1 in 5 year | Medium
90%
1 in 10 year | High
95%
1 in 20 year |
| Urban/industrial | 0% | 0% | 100% |
| Irrigation | 83% | 17% | 0% |
| Losses | 50% | 0% | 50% |
| S. | | | |

Integrated Vaal River System Principals (1 of 2)

General Operating Principle

Must be operated as an integrated system irrespective of who owns or operate each component of the system

Maintain Assurance of Supply

Primary objective of the operation of IVRS is to maintain the assurance of supply to users

Cost Saving Operating Rules

Secondary objective to implement cost saving operating rules during wet hydrological conditions when dams are full.

Integrated Vaal River System Principals (1 of 2)

Restriction of Demands

The operation of the IVRS is based on the principle that demands are restricted during severe drought events.

- Objective is to reduce supply to less essential use to protect the assurance of supply for more essential use.
- The basis on which restrictions are implemented is defined by means of a user priority classification definition.

Priority Classification for IVRS (% basis)							
	Priority clas	sification & assu	rance of supply				
User category	Low	Meduim	High				
	1 in 20 yr	1 in 100 yr	1 in 200 yr				
Irrigation	50	30	20				
Domestic	30	20	50				
Industrial	10	30	60				
Strategic indust	0	0	100				
Losses	0	0	100				
X							

IVRS Operating Rules (1 of 2)

Integrated Vaal River System

Dam Levels

 Trigger levels are used to control the event when transfer should commence or cease to prevent a dam from spilling or to reserve water for use by local users not benefiting from transferred water.

Short term yield capability of sub-systems

Short term yield versus demand - When balance is negative transfer/support will occur if surplus is available from other sub-system. When a balance can not be obtained curtailments will be imposed.

IVRS Operating Rules (1 of 2)
Integrated Vaal River System
• Annual Operating Analysis (WRPM) used as a decision support system to analyze & assess different scenarios of operation to determine the appropriate operating rules for the subsequent 12 months (1 May starting storage levels)
The operating rule involve controlling the transfer of water between reservoirs & sub-systems and the draw down of dams in the system.
Two main trigger mechanisms are used to control transfer volume & timing : dam levels & short term yield capability characteristics

•2011/03/03

Contents

- 1. The water resources planning process
- 2. Modelling water resource systems
- 3. Basic modelling principles
- 4. Definition of terms
- 5. <u>Practical 1</u>: Using a basic reservoir model

Assessment

- Resource capability
- Resource assurance
- Water requirements
- User criteria
- Water quality

Primary objective

Ensuring the supply of water resources to support changing water requirements:

- Over planning horizon
- In sustainable and cost-effective way

Achieved through:

- Assessment
- Intervention scheduling
- Management
- Monitoring

Intervention scheduling

Conservation

- Demand management
- Recycling
- Resource reallocation
- Adjustment of user criteria
- Catchment management

Resource development

- Reservoirs
- Transfer schemes
- Other

Management

- Resource operation
 - Reservoirs
 - Supply priorities
 - Transfers
 - Blending / dilution
- Operational cost savings
- System maintenance

2. Modelling water resource systems

Monitoring

- System behaviour
- Water requirements
- Impact initiatives / interventions
- Water quality objectives

Undeveloped catchment

Definition of a "model"

"... a simplified mathematical description of a system or process, used to assist calculations and predictions..."

Oxford English Dictionary

Limitations of modelling

- Inherently a simplification
- Assumption-dependent
- Data-dependent
- Selection of appropriate model
- Standardisation of modelling approach
- Specialist software:
 - Expert configuration and interpretation
 - Extensive checking and testing
 - Long turn-around time
 - (Typically) small user groups

Benefits of modelling

- Representation of real world
- Prediction of actual behaviour
- Testing environment for resource and cost impact of:
 - Human activities
 - Interventions
 - Management options
- Allows "mistakes" prior to actual implementation

Example models and utilities

- Data pre-processors (various)
- Data patching utilities (PATCHR, PATCHS)
- Rainfall-runoff models (WRSM2000)
- Stochastic streamflow models (STOMSA)
- Yield analysis models (WRYM)
- Planning analysis models (WRPM)
- Water quality models (WQS)
- Information management systems (IMSs)

Analysing scenarios (2 of 2)

	Scenarios							
Variables	1 (Base) 2		3					
	(A)	(B)	(A)	(B)	(A)	(B)		
Operation:	2 4	1 3	2	1 3	2	1 3		
Capacity:	150	300	150	300	200	300		
Demand:		10.0		10.0		10.0		
Result:		?		?		?		
				and the second secon		********		

The modelling process

- Define objectives
- Identify main physical features
- Define system network
- Select system operating rules
- Undertake scenario analysis
- Evaluate results
- (Repeat process)
- Implement decision

4. Definition of terms

Commonly used terms

- "Firm yield"
- "Secondary yield"
- "Total yield"
- "Historical yield"
- "1:100 year yield"
- "Yield with 95 % assurance"

Yield terms

- Target draft
- Reservoir failure and recovery
- Critical period
- Yield
- Base yield
- Firm yield
- Secondary yield

Water resource system

5. <u>Practical 1</u>: Using a basic reservoir model

Purpose and methodology

Purpose:

• Explore use of basic reservoir model

Methodology:

- Use spreadsheet model provided in [c:\Wrym\Basic Reservoir Model*.*]
- Analyse system for 3 inflow sequences
- Complete table with analysis results
- Interpret results

8	lierosoft Excel	- Flow 1											
9	Ele Edit Vie	ल Insert Forn	nat <u>T</u> ools <u>D</u> at	a <u>Wi</u> ndow <u>H</u> el	lp .					Тур	a question I	or help 💌	- 8 ×
	😂 🖬 👌 i d	3 0 1 🍄 🛍	🐰 ዄ 🕰 •	310.00.	🧕 Σ - 👌	👬 🖉 🗄 Arial		• 14 •	BIU		國(律)	H · 👌 ·	A -
	A1 •	<i>f</i> ∗ Inflow	sequence 1										
	A	В	С	D	E	F	G	R	S	T	U	V	1
1	Inflow se	<u>quence 1</u>											
2	4 1.4							_					
3	1. Innow-ser	ies statistics											
4	Average million m ³ /a	SD million m ³ /a	UV .	min million m ³ /a	max million m ³ /a					-			
6	100.00	41.11	. 0.41	28.71	207.91								
7													
8	2. Input vari	ables:											
9	Reservoi	r capacity	Start s	torage	Target al	straction							
10	million m ⁸	% MAR	million m ³	% MAR	million m ³ /a	% MAR							
11	100.0	100%	100.0	100%	0.0	0%							
12													
13	3. Analysis r	esults:											
14	Min storage volume	Total change in storage	Average supply	Average spills									
16	million m ⁸	million m ⁸ /a	million m ⁸ /a	million m ³ /a									
17	100.00	0.00	0.00	100.00									
18													
19													
20	4. Monthly ti	me-step anal	ysis calculati	ons:	-			-					
21	Month	Days in month	million m ³	Storage million m ²	Target million m ²	Supply million m ²	Spills million m ³						
23	1	31	12.02	100.00	0.00	0.00	12.0	7					
24	2	30	5.05	100.00	0.00	0.00	5.0	6					
25	3	31	5.35	100.00	0.00	0.00	5.3	5					
26	4	31	7.17	100.00	0.00	0.00	7.1	7					
27	6	28.25	15.02	100.00	0.00	0.00	15.0	ź		-			
20	7	31	6.71	100.00	0.00	0.00	15.5	1					

Statistics for 3 inflow sequences

Sequence	Average (million m ³ /a)	SD (million m³/a)	CV	Min (million m³/a)	Max (million m³/a)
1	100.00	41.11	0.41	28.71	207.91
2	100.00	78.22	0.78	10.91	350.75
3	100.00	156.34	1.56	1.30	1 023.87

Questions

- 1. What is the firm yield of the system for a reservoir capacity of 100 million m³? (start the reservoir full)
- 2. What is the length of the critical period?
- 3. Start the reservoir empty and re-determine the firm yield. What do you observe?
- 4. Is there a change in the critical period?
- 5. What is the minimum reservoir capacity required for a firm yield of 60 million m³/a? (start the reservoir at 60 million m³)

Table to be completed

Question	Results for indicated flow sequence						
Question	1	2	3				
1	million m³/a	million m³/a	million m³/a				
2	years	years	years				
3	million m ³ /a	million m ³ /a	million m³/a				
4							
5	million m ³	million m ³	million m ³				

Completed table

Quantian	Results for indicated flow sequence					
Question	1	3				
1	72.6 million m ³ /a	49.2 million m ³ /a	30.5 million m ³ /a			
2	3.0 years	3.7 years	6.6 years			
3	72.6 million m³/a	49.2 million m ³ /a	0.0 million m³/a			
	No change.	No change.	Dropped to zero.			
4	No change.	No change.	Yes, moved to start.			
5	63.2 million m ³	174.7 million m ³	524.7 million m ³			

Storage trajectory sequence 1, starting full

Contents

- 1. Background
- 2. Streamflow generation
- 3. Stochastic yield analysis
- 4. <u>Practical 2</u>: Interpreting yieldreliability curves

Why bother? Historical yield analysis at Midmar Dam

Period of analysis (hydrological years)	Number of years	Firm yield (million m³/a)
1930 – 1934	5	81
1930 – 1939	10	69
1930 – 1949	20	69
1930 – 1969	40	69
1930 – 1989	60	36
		DWAF (March 20

Stochastic streamflow sequence

- Streamflow sequences generated synthetically
- Sequence did not actually occur
- Based on characteristics of historical streamflows
- Generated by means of statistical (or stochastic) distributions

Marginal distribution

- Relationship between total annual flows
- Represented as flows plotted against probability of exceedance
- 4 marginal distribution models:
 - 2-parameter Log-normal (LN2)
 - 3-parameter Log-normal (LN3)
 - 3-parameter Bounded (SB3)
 - 4-parameter Bounded (SB4)
- Result: normalised annual flows

DWAE (March 1

Streamflow generation process

- Select statistical distribution models based on historical streamflow sequence:
 - Marginal distribution
 - Serial correlation
 - Cross-correlation
- Generate streamflow sequences
- Undertake verification and validation tests
- Stochastic Streamflow Model (STOMSA)

DWAF (March 2006)

Serial correlation

- Relationship between normalised annual flows
- Represented with correlogram
- 9 time-series distribution models:
 - ARMA (0,0); ARMA (0,1) ARMA (0,2)
 - ARMA (1,0); ARMA (1,1) ARMA (1,2)
 - ARMA (2,0); ARMA (2,1) ARMA (2,2)
- Result: normalised residual annual flows

Cross-correlation

- Flows from different catchments
- Result: parameter file (PARAM.DAT)

Generation of flow sequences

Reverse

order

DWAF (March 200

- Generate random numbers
- Apply selected statistical distribution models:
 - Cross-correlation
 - Serial correlation
 - Marginal distribution 🕇
- Disaggregate annual into monthly flow values

Verification and validation tests

- Verification: statistics used in generation
- Validation: reservoir storage tests
- Generate stochastic sequences
- Calculate particular characteristic for each sequence
- Plot resulting statistical distribution and compare to historical value
- Acceptable if between 25 & 75 percentiles

Plotting statistical distribution

3. Stochastic yield analysis

Definitions

- R_n = Long-term risk of failure
 - = [Failure sequences + 1] / [Total sequences]
 - = (19 + 1) / 41
 - = 0.488
 - = 48.8 %
- E_p = Long-term reliability of supply

$$= 1 - R_n$$

- = 51.2 %
- RI = Recurrence interval of failures

$$= 1 / (1 - E_p^{1/n})$$

= 90.18 years

DWAF (March 2006)

4. <u>Practical 2</u>: Interpreting yield-reliability curves

DWAF (March 20

Purpose and methodology Purpose:

Explore interpretation of yield-reliability curve

Methodology:

- Allocate prescribed water requirements at various assurance categories
- Interpret results

Water requirements					
Water user	Assurance category (RI)	Requirement (million m ³ /a)			
Domestic	1:200 years	15			
Environmental	1:100 years	10			
Industrial	1:50 years	10			
Irrigation	1:20 years	15			
Total:		50			
		DWAF (March			

Interpretation

- How does the base yield line of the imposed target draft compare to the requirement in each assurances category?
- What does the above observation imply?
- How much of the industrial requirement (RI = 1:50) can actually be supplied at RI = 1:100?
 Show this amount on the figure.

Contents of module

- 1. Creating a representative network model
- 2. Basic building blocks
- 3. General data requirements

Identify main physical features

2. Basic building blocks

Channels (1 of 2)

- Conduits that convey water in a water resource system network
- Used for defining physical features, incl.:
 - System target draft
 - River reaches
 - Flow constraints
 - Monthly time-series requirements
 - Losses
Channels (2 of 2)

Physical system features (cont.):

- Diversion infrastructure efficiencies
- Ecological requirements (IFRs)
- Pumping stations
- Minimum flow specifications
- Irrigation areas
- Inflows from other systems
- Flow control structures
- Hydropower plants

Channel types (2 of 3)

<u>Multi-purpose min-max channel</u>

Versatile channel type, e.g. abstractions routes (with monthly distribution) and channels with physical flow constraints

- Specified demand channel
 Abstraction routes (monthly time-series)
- Loss channel

System losses due to evaporation or seepage

Channel types (1 of 3)

- Model allows for 12 types of channels
- Each used for modelling particular system feature:
- Master control (yield) channel
 Impose target draft to determine system yield
- General flow channel
 Flow in open river with no capacity constraint

Channel types (3 of 3)

Diversion channel

Efficiency of diversion structures for utilising river flow

- IFR channel
 Water releases for ecological requirements
- Other channels:

Hydropower, pumping, minimum flow, irrigation and specified inflow

Nodes

Join channels according to physical layout of system:

- Combining flow from tributary catchments
- Points from which flow can be abstracted or diverted
- Splitting conveyance routes to simulate differing physical constraints

Nodes with storage

- Used to model reservoirs
- Range of physical and operational characteristics required

Nodes without storage

- Serve as junctions only
- No additional characteristic definitions
 required

Nodes with "inflows" (1 of 3)

- "Inflows" represent net runoff from incremental sub-catchments
- Both nodes with and without storage

3. General data requirements

Nodes with "inflows" (3 of 3)

- Net runoff = natural runoff, minus diffuse irrigation and runoff reductions
- Incorporated as monthly time-series:

Overview

- Study definition
- Run configuration
- Result output configuration
- System network definition
- Catchment hydrology data

Study definition

- Study name, description, etc.
- Sub-area name, description, etc.
- Scenario name, description, etc
- Version of WRYM to be applied
- WRYM data file name prefix
- Location of WRYM input data files
- Location of WRYM result output files
- Location of stochastic parameter file

Result output configuration

- WRYM result output file options:
 - Create data file (Y/N)
 - Level of output detail
- Channel flow data output options
- Reservoir data output options:
 - Month-end storage volumes
 - Month-end storage elevations
 - Net runoff, rainfall and evaporation

Run configuration

- General run description
- Description of months (names and number of days)
- Selection of run type (historical or stochastic)
- Stochastic run options
- Automatic determination of firm yields

System network definition

- Reservoirs
 - Properties (name, status, etc.)
 - Physical characteristics
 - Zone and rule curve elevations
 - Start storage level
 - Associated incremental sub-catchment
- Flow routes
- System layout/connectivity
- Operational aspects

Catchment hydrology data

- Time-series data for incremental subcatchments:
 - Natural runoff
 - Streamflow reductions (forestry, etc.)
 - Diffuse irrigation
 - Point rainfall
- Evaporation (12 monthly values)
- Parameters for generating stochastic streamflow data

Contents

- 1. Background
- 2. Using "penalties" to define operating rules
- 3. <u>Practical 2</u>: Interpreting penalties

General

- Operation of system must be controlled
- Generally based on:
 - Practical experience
 - Specialist analysis
- Overall objectives:
 - Optimise utilisation of water resource (capability, assurance, sustainability, quality)
 - Minimise cost of operation

Typical aspects

- Prioritisation of supply to water users
- Prioritisation of use of water sources
- Conditions under which inter-reservoir and inter-basin support occurs
- Minimisation of spillage
- Blending options
- Flood management

2. Using "penalties" to define operating rules

Selection process

- Define objectives
- Select initial set of operating rules
- Implement initial selection in model
- Undertake analysis and interpret results
- Evaluate achievement of objectives
- Reselect operating rules
- Repeat selection process

Penalties

- Tool for implementing selected operating rules in model
- Dimensionless value assigned by analyst to system components:
 - Channels: for every unit of flow
 - Reservoirs: for every unit of water in storage
- Interpreted by comparing relative size
- Basis of model flow-routing solution

Water resource system

Modelling channel penalties

- Basic building blocks: "arcs"
- Allow particular flows under specific circumstances
- For each arc, 3 data values defined:
 - Lower flow limit
 - Upper flow limit
 - Penalty ("dis-benefit" of every unit of flow)
- Up to 5 arcs, generally only 1 or 2

Modelling reservoir penalties

- Defined in terms of "storage zones" and "rule curve level"
- For each zone, 2 data values defined:
 - Elevation of lower zone boundary
 - Zone penalty
- Penalty relation to rule curve:
 - Above: "dis-benefit" of water in storage
 - Below: "benefit" of water in storage

3. <u>Practical 3</u>: Interpreting penalties

Purpose and methodology Purpose:

- Explore use of penalties to model operating rules
- Investigate behaviour of system under various situations

Methodology:

- Analyse system for 3 cases
- Complete table with results

Table to be completed:

Channel		Flow	in chann	els for in	dicated	cases				
Case 1: Reserve	oir A in zo	one 1								
Channel No.	1	2	3	4	5	6	7			
Flow (m ³ /s)										
Case 2: Reservoir A in zone 10										
Channel No.	1	2	3	4	5	6	7			
Flow (m ³ /s)										
Case 3: Reservo	oir A failu	ire								
Channel No.	1	2	3	4	5	6	7			
Flow (m ³ /s)										

Completed table:

Channel		Flow	in chann	els for in	dicated	cases				
Case 1: Reserve	oir A in zo	one 1								
Channel No.	1	2	3	4	5	6	7			
Flow (m ³ /s)	13	10	3	1	2	0	2			
Case 2: Reservoir A in zone 10										
Channel No.	1	2	3	4	5	6	7			
Flow (m ³ /s)	3	0	3	1	2	0	2			
Case 3: Reservo	oir A failu	ire								
Channel No.	1	2	3	4	5	6	7			
Flow (m ³ /s)	2	0	2	1	1	2	2			

DWAE (May

Definition

"... a simplified mathematical description of a system or process, used to assist calculations and predictions..."

- Oxford English Dictionary

DWAF (May 2005

DWAF (May 200

1

Benefits of modelling

- Allows representation of real world, subject to various human activities / interventions
- Can predict behaviour prior to actual experience
- Provides testing environment to assess best options for application in real world
- Allows "mistakes" without applying incorrect or inappropriate options
- Guides design of corrective measures

DWAF (May 2005

Limitations of modelling

- Cannot capture full complexities of real world
- Dependent on assumptions
- Data availability
- Selection of appropriate model
- Difficult to standardise modelling approach
- Specialist configuration and interpretation

The modelling process

- Small user group
- Long turn-around time

Define objectives

Evaluate results

Implement decision

Define system network

Extensive configuration checking

Identify main physical features

Select system operating rules

Undertake scenario analysis

Purpose

- Assessment
 - Resource capability
 - Resource assurance
 - Water quality
- Impact of interventions
 - Conservation
 - Resource development
- Impact of management options
 - Resource operation
 - System maintenance
- Monitoring of observed behaviour

DWAF (May 20

DWAF (May 2005

DWAF (May 2005

History of WRYM

- Water Resources Yield Model (WRYM)
 development commenced in mid-1980s
- Network simulation model to analyse
 complex water resource systems
- Based on Acres Reservoir Simulation
 Program (ARSP) (from Canada)
- Progressive development
- Custodian: D: IWRP

DWAF (May 2005

DWAE (May 200

<complex-block>

Application of WRYM

Water resource system simulation for:

- Resource assessment
- Impact of interventions
- Impact of management and operational options
- Basis for monitoring observed system
 behaviour

DWAF (May 2005

Importance of WRYM

- Used extensively in detailed studies for over 20 years
- Basis for important decisions with significant financial implications
- Theoretical basis accepted and trusted
- Results independently verified
- Widely considered as a leading water
 resource management tool

Strengths of WRYM

- Flexible system configuration
- Complex systems
- Multiple reservoirs, water users
- Variety of physical system features
- Flexible operating rule definitions
- Rigorous stochastic flow generation
- Software forward and backward compatible

Issues regarding WRYM Information management

- No structured storage for information from costly studies
- Multitude of ASCII in- and output files
- Large part of effort due to inefficient information processing
- Limited metadata facility
- No live linkage between documentation and information

Issues regarding WRYM Software system

- Operation:
 - No graphical user interface
 - Effort for configuration
 - Extensive setup testing and verification
 - Graphical output via post-processors
- Maintenance:
 - Outdated technology (Fortran)
 - Limited experienced resources

DWAF (May 2005)

DWAF (May 200

General

- Information Management System (IMS)
 for the WRYM
- Current Version 3.8.2
- Potential user group: existing WRYM
 users and new users
- To be applied in:
 - Existing DWAF studies
 - Future DWAF studies
 - Other studies

DWAF (May 2005

DWAF (May 2005

Components

- Information management
- User interface
- Water resource system simulation (WRYM)

DWAF (May 2005

Information management

- Database for structured storage, retrieval and sharing of information
- Import existing WRYM data files
- Validate WRYM input data
- Create new WRYM input data files
- Capture additional metadata
- Link to study reports, documentation
- Manage studies and scenarios

User interface

Windows dialogs to:

- Interact with database
- Input, modify and view information
- Initiate and display results of data validation
- Initiate WRYM model run
- View results (data grid, graph)
- Export results for documentation

System simulation (WRYM)

• WRYM model run, based on definition of:

- System network definition
- System operating rules
- Specific scenario
- Run control options
- Result output options
- Data input files exported from IMS
- Result output files imported to IMS

DWAF (May 2005)

Linkage between components

DWAF (May 200

UseSys

- Obtain existing model and documentation
- Obtain new model releases and documentation
- Inform users of training and other events
- Provide feedback on model
- Maintain sharable database of queries, comments, requests and feedback

www.usersupport.co.za

Help desk

- Obtain help on using the model
- Obtain information on new model releases, documentation and training
- Provide feedback on model, documentation
 and training

+2712 336 7090

DWAF (May 2005)

DWAF (May 2005

Hydro directory

- Catchment files:
 - .inc (natural flows): mill m³/mth
 - .ran (rainfall): mm
 - .irr (diffuse irrigation): mill m³/mth
 - .aff (afforestation): mill m³/mth
- Parameter file: (param.dat)
- Any other file with a path name in the model

Setting up a study

- Initial installation & set up
- Metadata for study
- Importing and exporting
- GIS functionality
- WRYM.dat: link between model & computer hard drive

2011/03/03

Statistics for 3 inflow sequences

Sequence	Average (million m ³ /a)	SD (million m³/a)	CV	Min (million m³/a)	Max (million m³/a)
1	100.00	41.11	0.41	28.71	207.91
2	100.00	78.22	0.78	10.91	350.75
3	100.00	156.34	1.56	1.30	1 023.87
					DWAF (May 2005)

Purpose and methodology

Purpose:

• Create a new study in the WRYM-IMS to be used for subsequent practicals

Methodology:

- Use hydrological data files provided in directory [c:\Wrym\New\Hydro*.*]
- Create new sub-area and new scenario
- Create new WRYM.DAT-file for the study
- Open new study
- Define analysis period: start 1920, 75 years
- Set model output to appropriate level of detail

				FLOW	1.INC							
1920	12.02	5.05	5.35	7.17	15.02	19.55	6.71	0.99	0.36			
1921	3.39	12.86	18.45	19.80	10.84	7.29	1.90	0.83	1.60			
1922	8.88	20.71	13.12	13.36	17.53	8.29	4.82	2.46	6.27			
1923	2.99	6.59	6.49	10.87	9.29	23.67	7.49	0.35	0.28			
1924												
1925					FL	.OW2.I	NC					
1926				40		F.2 0	15 47	71 6		co 0		
1020	1	920 21		42 8.	20 10	.53 8	.15 4/	./1 0	. 57 2.	50 0.		
1929	1	921 1	.94 54. :02 71	01 20	16 122	.48 8 E1 14	./0 D	.28 1	.00 0.	58 U.	50	
1930	1	922 30	0.95 /1.	.91 29. AQ 2	10 122	.51 14 80 5	.99 D 86 15	73 7	.63 U. 16 I	25 0	61	
	1	924		12 6.				.1.2 1		<u></u>		
	1	925										
	1	926					1 200					
	1	927	1920	0.00	5.26	2.21	0.71	49.18	11.61	32.95	7.62	0.00
	1	928	1921	0.01	2.01	1.19	0.90	2.79	0.27	0.00	1.32	0.01
	1	929	1922	2.53	0.03	0.89	18.91	158.93	151.75	80.19	3.34	0.00
	1	930	1923	0.39	1.15	0.02	1.08	14.58	4.19	2.80	0.00	0.00
	-		1924	0.05	2.95	1.14	7.03	111.77	77.16	16.46	1.31	0.00
			1925	0.57	0.03	5.48	11.20	0.06	5.68	2.52	0.59	4.62
			1926	0.07	0.22	5.61	1.42	2.05	4.31	4.03	0.01	0.00
			1927	0.00	7.02	3.09	14.63	3.55	85.51	3.45	0.00	0.00
			1928	0.00	0.09	1.71	0.85	1.76	39.14	0.00	0.29	0.46
			1929	0.39	0.08	1.08	0.66	3.77	2.94	0.00	0.00	0.00
			1930	1.50	0.65	1.17	11.52	14.08	68.96	0.01	0.00	0.00

Hydrological data files

1 2	3							
:\Wry	m\New\F	lydro\Flowl						
1	75	20	-3.1022	-2.7822	1.0569	0.9556	0.0000000	
0 99	.00000	1.00000	0.00000	0.00000	-0.30277	0.00000	0.00000	0
:\Wry	m\New\F	lydro\Flow2						
	75	20	-1.0711	-1.4230	0.2666	-0.1470		
1		-5.4177330	1.25	64948	1.0000000		0.0000000	
0	.00000	1.00000	0.00000	0.0000	-0.03578	-0.23985	0.0000	0
100	.00053	77.69842	40.23204	77.05479				
:\Wry	m\New\F	lydro\Flow3						
	75	20	-0.3640	-1.1358	0.5214	-0.3056		
1		-3.0504633	0.79	54627	1.0000000		0.0000000	
0	.00000	1.00000	1.60590	-0.88902	1.57497	-0.95734	0.0000	0
100	.00053	155.29122	39.80673	77.05479				
- TH	E SQUAF	RE-ROOT OF THE	LAG-ZERO DI	SPERSION MAT	RIX GO			
-0.78	510132	-0.43891111 -	0.32711001					
-0.82	477724	0.46998315 -	0.20812602					
-0.63	486243	-0.06779690	0.67490543					
					TV 110			
0 - T	HE SQUA	ARE-ROOT OF TH	IE LAG-ZERO S	TARTING MATE	IX HO			

😢 Study Edit	?
All Models Yield Model	
Model: Yield	y
Study : Water Resource System Analysis	Study Number 1
Study Name: Water Resource System Analysis	Study Date: 1990/02/03
Client	Description Training for the Water Resource System Analysis
Consultant	
SubArea New Sub-area	Description: New Sub-area
SubArea Name New Sub-area	_
Scenario New Scenario	Description: New Scenario
Scenario Name New Scenario	_
Version 6	•
Files Loaded:	
🗸 Save 🛛 🔁 Reset	X Cancel

<image>

DWAF (May 2005)

Run Configuration-dialog

Purpose and methodology

Purpose:

• Define the system network, identical to that for basic spreadsheet model (Practical 1)

Methodology:

- Identify main physical features
- Create representative network model
- Select system operating rules
- Set up using basic building blocks
- Run model
- Create system network diagram

DWAF (May 2005)

Main physical features

Basic assumptions

Configuration identical to Practical 1:

- Use inflow sequence 1
- Set target draft = 100 million m³/a
- No dead storage zone in reservoir
- Supply to master control (yield) channel when reservoir above DSL
- Spillage when reservoir above FSL
- No evaporation losses from reservoir surface
- No rainfall on reservoir surface
- Reservoir characteristics as follows:

Reservoir characteristics

Elevation (m, masl)	Volume (million m ³)	Surface area (km²)
FSL = 1000	100	10.0
980	80	8.0
960	60	6.0
940	40	4.0
920	20	2.0
DSL = 900	0	0.0

Basic building blocks

Set up using basic building blocks:

- Define reservoir penalty structures
- Define channel penalty structures
- Create reservoirs
- Define catchment hydrologies
- Create nodes
- Create channels
- Define functional system features

DWAF (May 2005

WRIMS Ver 3.6.2 (Medd) le Edit Wew Model Data Reports Wizards Help		F. F. S. S. 🔗		_10
Compared the material and the second se	1996; [Johd Levenson] Paratol Levin Research Kadel Research Kadel Research Kadel Research Kadel Research Kadel Research Kadel Research Kadel Research Research Lin (bio dig) Johnson Gallon Research Research Research Research Research Research Research Levin Research Levin Rese	nord Owartenics Cathwert Hotishap Fendy Shurd	m 2m Parkers Interest 200 200 201 201 201 201 201 201	× - 11 E
Graph				
cenario:1	test			
	N. 107	6.4.0	Harry C Samo	

<section-header><text>

S ≤ S ≤ S ≤ S ≤ S ≤ S ≤ S ≤ S ≤ S ≤ S ≤		ام ام ام	all all as	In In I	a E col								
and have a flate bet worked as her		S S S	44 6	F. S.	S. 23								
ange Lists Nelwork, D'ara File Edit Results 1	C YRC Output Comp	arison Parame	er Limita										
- Dentiguation	Pn	openties Evape	ration Physica	Characteristics	Catchmen	Hydrology	Penalty Struc	tures Zone 8	levations				
- Drought Restrictions Mate Date	G	Height			C					C Percen			
- Run Configuration			Full Supply Le	vel (maxi) 1000	.00		Dead Storag	ge Level (max)	900.00			Botton Level	(max) [900.00
- Master Control Configuration	6	avel 00	N04	DEC	JAN	FEB	M48	APR	MAY	JUN	JUL	AUG	SEP
- Catchment Hydrology	1	900	900	900	900	900	900	900	900	900	900	900	900
Network Features	J	1010											
National Fedures		1010 1000 990 990 990 990 9970 9970 9970 9970	9 NOV	DEC	6 JAN	s FEB	5 MAR	5 AFR North	5 MAY	5 JUN	JUL	9 AUG	9 SEP
Network Features	00	1010 100 990 200 990 200 990 900 990 90 910 920 910 940 940 920 910 940 910	9 NOV	DEC	0 JAN	FEB	MAR	5 APR North	0 MAY	UUL C	JUL	6 AUG	SEP
Nation Features	Dtr jee	1010 1000 990 990 990 990 990 990 990 99	NOV	DEC	IAN	FEB	9 MAR HI	S APR Meeth	5 MAY	JUN	JUL	9 AUG	SEP
National Features		1010 1000 990 990 990 990 990 990 990 99	NOV	5 DEC	G JAN terrsediate zo	9 FEB	S MAR	APR Month	6 MAY	JUN	JUL	AUG	5 SEP
Nation Fedures	Dir jea jeat	1010 1000 990 990 990 990 990 990 990 990 990	NOV NOV Isolad	DEC	G JAN termediate zo	9 FEB	MAR	APR Month	MAY	JUN	JUL	AUG	SEP

Nodes Without Inflow-dialog

Despite fill former: User Terfan heads 160	YRE Ouge Creation Prevents Univ Overall Prevents (Inve Overall Prevents (Inve Overall Prevents (Inve Universe Inve Prevents (Inve Prevents) (Inve Prevents			
Grid Graph				
SubAreatest Scenario 1	best			
	Madel Town - Vield	Shada Damanan hairing	Unar C Search	

Master Control Feature-dialog

Configuration Catalahumete Dirocyte Resolutions Heats Data Hun Configuration Utupat Configuration Metric Configuration Metric Configuration	Channel Properties Pensity Festure name : Channel sub-type : Clad cases Target routen Maximum	Stauchares Moster Control Feature MASTER CONTROL FEATURE Water		Northly water	Northly target		
Control Hodge Control Hodge Control Hodge Control Hodge Control Hodge Control Hodge Control Control Hodge Control Contro Control Control Control Control			DCT NOV DEC JAN FEB MAR APR MAY JUN JUN JUN JUN JUN JUN JUN JUN JUN	1000 1000 1000 1000 1000 1000 1000 100	C miles m/m m/s 8497 8214 8497 8214 8497 8497 8214 8497 8214 8497 8497 8497 8497 8497 8497 8497 849	Million në (Aerean	
Grid Graph	Target system yead for each	load case in descending order(million ind)a)				
ubAveatest	lest						
cenarix1	hest						

<section-header>

Drawing Properties-dialogs

Network-tab sheet

Verifying and testing the system network definition

Documentation

Ensures specific configuration can be recalled, verified, reviewed, duplicated:

- Assigned number and name
- Description and purpose
- Configuration upon which it is based
- Nature of modification
- Model parameters edited
- Summary of run results

DWAF (May 2005)

DWAF (May 200

Background

Standard procedure followed after each system configuration change:

- Document nature and purpose
- Implement
- Verify system network integrity
- Test system operational behaviour
- Make corrections, if necessary
- Repeat procedure

Verify network integrity

Check that basic input data and network definition provided by user are correct:

- Typical data input errors
- Sub-catchment hydrology data
- Physical system characteristics
- System network connectivity

Verify network integrity Typical data input errors

- Data entry outside format structure
- Tabs and other invalid characters
- Incorrect number of input elements
- Inconsistencies in number of inputs
- Duplication of element numbers
- Incorrect data file directory references

Verify network integrity Sub-catchment hydrology data

- Compare:
 - Simulated inflows to each node
 - Net runoff from associated sub-catchment (*.INC - *.IRR - *.AFF)
- Based on historical model run:
 - Particular month
 - Average over analysis period
- Based on stochastic model run average

Verify network integrity Physical system characteristics

DWAF (May 2005

DWAF (May 200

Compare model run results with known characteristics of system elements:

- Reservoir characteristics, e.g. FSL, DSL and bottom level
- Reservoir water levels
- Maximum capacity of transfers
- Hydraulic constraints of channels

Verify network integrity System network connectivity Undertake simple mass balance calculation

Test operational behaviour

Ensure system behaviour does reflect intended operating rules:

- Observe simulated model results
- Check behaviour of system elements:
 - When reservoirs are full
 - When reservoirs are empty
 - During drawdown events
 - Supply priorities
 - Inter-reservoir transfers

Purpose and methodology of practical

Purpose:

• Verify and test the system network as defined in Practical 10

Methodology:

- Verify system network integrity:
 - Sub-catchment hydrology data
 - Physical system characteristics
 - System network connectivity
- Test system operational behaviour

Verify network integrity Sub-catchment hydrology data

Verify network integrity Physical system characteristics

Verify network integrity System network connectivity (3 of 3)

Verify network integrity System network connectivity (2 of 3)

Table to be completed:

Test operational behaviour (1 of 2)

Completed table

Description	Result			
Beschpiten	m³/s	million m ³ /a		
Inflows:				
Runoff	3.169	100.00		
Outflows:				
Yield channel	2.926	92.34		
Spill channel	0.285	8.99		
Balance (= Inflows - Outflows)	-0.042	-1.33		
∆S (as simulated)	-0.042	-1.33		

DWAF (May 2005

Contents

- 1. Role of the WRPM
- 2. Model structure
- **3.** Overview of model results

Intervention planning

To determine, over a planning horizon:

- Need for intervention
- Timing of intervention
- Implementation schedules
- Filling times

Within context of:

- Growing water requirements
- User criteria of acceptable risks
- Salinity-related system constraints

RP (Pty) Ltd, September 20

Operations planning (2 of 2)

To determine :

- If and when curtailment are required
- The severity of required curtailments
- Volumes that need to be transferred for intersub-system support
- Short-term surplus available in the system
- To identify short comings in the Management/Operating of the system
- To assist with various operational related decisions

Operations planning (1 of 2)

To determine operating rules for:

- Reservoirs
- Inter-reservoir support
- Inter-sub-system transfer
- Salinity (TDS) blending
- Management of dual users (e.g. hydropower and irrigation)
- Minimising operational costs (projected probabilistic cost analyses)

Capabilities

- Variety of physical system features
- Flexible configuration (not hard coded)
- Complex systems, multiple reservoirs
- Multiple users and assurance levels
- Flexible operating rule definitions
- Dynamic changes over time
- Rigorous stochastic flow generation
- Software forward compatible

VRP (Pty) Ltd, September 2

Limitations

- High level of experience
- Effort for configuration and maintenance
- Extensive testing and verification
- Graphical output via post-processors
- No automatic optimisation (scenarios)
- No antecedent flow conditions
- Few specialists for maintenance

Model structure (1 of 2)

WRYM

WRPM

4 basic components:

- Network simulation algorithm
- Stochastic streamflow generator
- Water resource allocation
 procedure
- Salinity modeling procedures

Main model results (1 of 2)

Projection plots of:

- Monthly / annual reservoir volumes (also with historically observed trajectory)
- Monthly / annual system volumes
- Annual total demand vs. supply
- Annual curtailment levels

Main model results (2 of 2)

- **Projection plots of:**
- Monthly / annual avg. channel flows
- Monthly / annual avg. TDS concentrations (channels and reservoirs)
- Hydropower:
 - Energy
 - Power

Result presentation (2 of 7)

Result presentation (3 of 7)

Projected curtailment levels Scenario 1 (Start at 62 %)

-		
	doto	CORVOIRC
		 SELVOILS

Reservoir name	Full supply volume (million m³)	Dead storage volume (million m ³)	Live storage volume (million m³)	Incremental MAR (million m ³ /a)
Caledon River catc	hment			
Welbedacht Dam	21.45	5.12	16.33	1 196.0
Knellpoort Dam	136.95	6.75	130.20	20.8
Modder River catcl	nment			
Rustfontein Dam	72.21	0.17	72.04	28.6
Groothoek Dam	15.01	1.42	13.59	6.4
Mockes Dam	4.63	1.32	3.31	78.2
				DWAF (May 2

System	detail	s: strean	nflow
--------	--------	-----------	-------

	Incremental	Natu	ralised MA	R (1920 – ⁻	1987)
Catchment	area (km²)	mm/a	million m³/a	SD	с٧
Caledon River catc	hment				
Welbedacht Dam	15 245	78.5	1 196.0	832.8	0.7
Knellpoort Dam	798	26.1	20.8	32.9	1.6
Modder River catch	iment				
Rustfontein Dam	940	30.4	28.6	43.2	1.5
Groothoek Dam	166	38.6	6.4	7.3	1.1
Mockes Dam	1 982	39.5	78.2	94.1	1.2
					DWAF (May 2

System details: channel constraints and losses

Channel number	Description	Quantity
31	Mockes Dam to system yield	1.04 m³/s
121	Welbedacht Dam to demand centres	1.16 m³/s
22	Loss 1	10 %
27	Loss 2	15 %
32	Loss 3	5 %
40	Loss 4	5 %
		DWAF (May 20

DWAE (May 20

Operational details

- Mockes Dam used first for system yield
- · Welbedacht kept full by releases from Knellpoort
- No releases from Groothoek
- Welbedacht used before Rustfontein
- Demand channel 28 takes priority over main system yield (channel 30)
- Demand channel 38 low priority only supplied if Welbedacht spills
- Spill channel 34 penalty causes change in supply priority to Modder system (Rustfontein) when spilling

DWAF (May 2005

DWAF (May 2005

Purpose and methodology Purpose:

- Develop draft-yield line
- Determine historical firm yield

Methodology:

- Select WRYM-IMS study as defined under [Caledon-Modder]; [Training]
- Analyse a range of target drafts and document yield results in table
- Draw Draft vs. Yield-line

Ve Edit Wew Model Data Wizar	nds Help	1 al -						
leturyt Data File File Powers	Model Capabilitu	<u>• • •</u>		· · · · · · ·	+1			
E Configuration	(harnel Propeting	Master Control Fe	stute Persalty St	in schuter]				1
- Run Configuration	a an an an against		- [r a ally 5		_	_		
Uutput Configuration Haster Control Configuration	Feature name :	SYSTEM	I YIELD FOR BLC	IEM .				
SYSTEM YIELD FOR BL	Channel sub-type :	Water		-				
	Load cases Target system ? yield [million m3/a]	Aaximum system yield (million m3/a)	Target power demand (MW-continuous)	Include In Analysis		Monthly water upply distribution factors	Morthly target dealt @ million m3/m C m3/s	
- VELBEDACHT DAM	50.00	50.00	0.00	V	OCT	1.05	4.37	
V 4 - KNELLPOORT DAM	45.00	45.00	0.00	V	NOV	1.10	4.58	
9 MOCKES DAM	40.00	40.00	0.00		DEC	1.13	4.71	
• Nodes	35.00	30.00	0.00		JAN	1.25	5.21	
	30.00	30.00	0.00		FEB	1.10	4.58	
🗉 💮 Output Files	25.00	20.00	0.00		MAR	0.97	4.04	
Network Visualiser	15.00	15.00	0.00	V	APB	0.88	3.67	
	10.00	10.00	0.00	V	MAY	0.86	3.58	
	5.00	5.00	0.00		JUN	0.83	3.46	
			,		JUL	0.83	3.46	
					AUG	0.95	3.96	
					SEP	1.05	4.37	
						12.00	50.00	

en minimo ver 2000 (meru)					_ E 🖻 🞽
Ele For New Goost Geb					
Network Data File Edit Hesuits M	odel Capability				
 System Yield Historical Yield Results 	System Yield				
- Stochastic Yield Results	TD (Million m3/a)	Deficits (Proportion)	Yield (Million m3/a)		
	50.00	0.39	30.50		
	45.00	0.16	37.80		
	40.00	0.00	40.00		
	35.00	0.00	35.00		
	30.00	0.00	30.00		
	25.00	0.00	25.00		
	20.00	0.00	20.00		
	15.00	0.00	15.00		
	10.00	0.00	10.00		
	5.00	0.00	5.00		
	1				
fare line l					

3. <u>Practical</u>: Evaluating system operating rules

Purpose and methodology Purpose:

 Determine operating rule for higher historical firm yield

Methodology:

- Use same study definition as for previous practical, [Caledon-Modder]; [Training]
- Change supply priority to Rustfontein
- Determine historical firm yield
- Compare with results from Previous Prac

DWAF (May 2005

DWAF (May 2005)

No. Edit View Model Data Wizards He	sh de					کا النا اللا
		+ +-	** *-			
Network Data Pee Edit Results Model L	сарабику					
Configuration Bun Configuration	Properties Evaporatio	on Physical Characteristics	Catchment Hydrology	Penalty Structures Zon	e Elevations	
Output Configuration Master Control Configuration	Zone 	Penaly 	View C Penaly	C Reservoir	Rule Curve	1 🕅 🕅 Balancing Data
- SYSTEM YIELD FOR BLOEM	Zone Name S V	R Penalty Structure 1	Penalty Structure 2	Penalty Structure 3	Penalty Structure 4	Penalty Structure 5
- Reservoir Penalty Structures	SURCHG 3 0	0 1000	1000	1000	1000	1000
Reconciliation Analysis	DRDWN1 3 0	0 10	0	2	15	2
E V Reservoirs	DRDWN2 3 0	0 25	20	40	30	20
V 10 - GROOTHUEK DAM	DSL 3 0	0 10000	10000	10000	10000	10000
P To MODES Dool P To MODES Dool P To Mode S P Doortel So To Mones P To	<u> </u>	10.6R00TH0E 2:wELEEDACH	KNELLPOORT	S S NUCKES DAY	- 8 - RUSTFONTEIN	C D
Grid Graph						
SubArea: Caledon-Modder	Caledon-Modder					
	- 17					

Interpretation

- For the operating rule *Welbedacht used before Rustfontein*, what is the historical firm yield?
- For the operating rule *Rustfontein used before Welbedacht*, what is the historical firm yield?
- Which operating rule results in a higher historical firm yield?

4. <u>Practical</u>: Evaluating development options

Purpose

Practical divided into two parts:

• <u>Part 1</u>:

Evaluate possible development options to increase historical firm yield

• Part 2:

Determine preferred operating rule for selected development option

Observations

- <u>Welbedacht Dam</u>: Maintained at FSL for entire analysis
- <u>Knellpoort Dam</u>: Under-utilised
- Rustfontein Dam:

Used extensively and emptied in the 1933 hydrological year

DWAF (May 2005)

DWAF (May 2005

Part 1: Methodology

- Use same study definition as for previous practical, [Caledon-Modder]; [Training]
- Define single target draft, equal to system historical firm yield (= 32.6 million m³/a)
- Execute model and import results
- Create chart to view simulated reservoir volume results (use *Normalised*-view)
- Focus on Welbedacht, Knellpoort and Rustfontein

Possible development options

- Raise Rustfontein Dam
- Raise Knellpoort Dam
- Increase capacity of Tienfontein pumping station (channel 20)
- Increase capacity of transfer from Mockes Dam (channel 31)
- Increase capacity of transfer from Welbedacht (channel 121)

Part 2: Methodology

- Use same study definition as for previous practical, [Caledon-Modder]; [Training]
- Analyse system with range of capacities for channel 121
- Use functionality to determine historical firm yield automatically
- Document results in table and draw Channel Capacity vs. Yield-line
- Repeat with system configured for both operating rule options

DWAF (May 2005)

El WRIAM Ver 21910 (Vield) Ele Edit Yew Model Data Wicards He E: 🖘 🙌 📓 🍊 🕱 🏠 🍉	
 Network DVa [F#E/B] Result Model 	Statistic Function
	Image: Second

Min-max Flow Feature-dialog New Model Data Wizards Help work Data File Edit Results Model Capability A Configuration Channel Properties Min-max Flow Feature Penalty Structure V Reservoirs Nodes Nodes Channels Orversion Chare −=± Minimum Flow C + = Loss Channels +# Marca Feature name : PIPE: WELB TO BLOEM Firm yield analysis required ? 🔲 (In addition to master control) Arc 1 OCT 1.16 NOV 1.16 DEC 1.16 JAN 1.16 MAR 1.16 MAR 1.16 JUN 1.16 JUN 1.16 JUN 1.16 JUN 1.16 JUL 1.16 Flow constraints (m3/s) : Loss Unarineis Multi-Purpose Min-Max Channels E Multi-Purpose Mim-Max Channels 22 80- 600 2.2 0075448EL0 21 28 - 600 2.2 0075448EL0 21 31 - PIFE: MODDER TO BLOEM 21 33 - DEM 31 HIRA NOHU 21 33 - DEM 31 HIRA NOHU 21 33 - DEM 11 HIRA COMP RELEASE 21 212 - MPE CALEDON TO BLOEM 0. Purping Channels 0. Densmd Channels 0. Densmd Channels Totals 35.6363 (million m3/year) Reus constraints: Monthly maximum Reus constra Grid Graph ubArea: Caledon-Modde Caledon-Modde Training Model Type : Yield Training Study : Water Resource System Analysis DWAF (May 2005

Be Edit View Model Data Wizards Help E: So N? 25 (So X to Data Sector Angle) Network Data File Fell Benetic Model Can		9 9 9 4 2					
Configuration	Channel Properties Master Control	Feature Penalty Structures					
 Run Configuration Dutput Configuration 							
Master Control Configuration CONTROL OF DE OFFICE	Channel sublume:						
Channel Penalty Structures Recervoir Penalty Structures Reconciliation Analysis	Load cares Target system Maximum syste yield (million yield (million m3/a) m3/a)	m Target power Include In demand Analysis (MW-continuous)		Monifuly water upply distribution factors	Monifuly target draft (* million m3/m C m3/s		
E Victoria	200.00 200.00	0.00	OCT	1.05	17.50		
Network Features	20.00 20.00	0.00	NOV	1.10	18.33		
Network Visualiser			DEC	1.13	18.83		
			JAN	1.25	20.83		
			FEB	1.10	18.33		
			MAR	0.97	16.17		
			APR	0.88	14.67		
			MAY	0.86	14.33		
		E E	JUN	0.83	13.83		
			JUL	0.83	13.83		
	Target system yield disabled for firm yield	Calculate Historic	AUG	0.95	15.83		
			SEP	1.05	17.50		
				12.00	200.00		
5id Graph	Trield: Target system yield for each	had case in descending order(mil	ion m3/a)				
Grid Graph							
	Para and and an						

🖁 WRIMS Ver 2.8.0 (Yield)				 . 8
Elle Edit Yew Model Help				
5 (s) 🕺 😹 🎒 🖾 🛸 🛸	2 🕰 🔟 😥			
Network Data File Edit Results Model	Capability			
E System Yield	System Yield			
Stochastic Yield Results	TD (Million m3/a)	Deficits (Proportion)	Yield (Million m3/a)	
	68.86	0.00	68.85	
	75.75	0.24	57.57	
	82.64	0.31	57.02	
	89.53	0.36	57.30	
	96.42	0.41	56.89	
	103.31	0.45	56.82	
	110.20	0.48	57.30	
	117.09	0.51	57.37	
	123.98	0.54	57.03	
	130.87	0.56	57.58	
Grid TSC YRC				

Description	Channel 121 capacity and corresponding yield results						
Welbedacht used before Rust	fontein						
Channel 121 capacity (m ³ /s)	2.0	3.0	4.0	5.0	6.0	7.0	8.0
Historical firm yield (M.m ³ /a):							
Historical firm yield (m³/s)							
Rustfontein used before Welb	edacht						
Channel 121 capacity (m ³ /s)	2.0	3.0	4.0	5.0	6.0	7.0	8.0
Historical firm yield (M.m ³ /a):							
Historical firm yield (m ³ /s)							

Interpretation

- For *Welbedacht used before Rustfontein*, what is the yield with a Channel 121 capacity of 7.0 m³/s?
- For *Rustfontein used before Welbedacht*, what is the yield with a Channel 121 capacity of 7.0 m³/s?
- Which operating rule results in a higher yield with a Channel 121 capacity of 7.0 m³/s?
- How does this compare with results obtained from previous practicals, where the Channel 121 capacity was 1.16 m³/s?
- What general lesson can be learned from the above observation?

Results	
	DWAF (May 2005)

Completed table										
Description	Channel 121 capacity and corresponding yield results									
Welbedacht used before Rustfontein (as for Practical 4)										
Channel 121 capacity (m ³ /s)	2.0	3.0	4.0	5.0	6.0	7.0	8.0			
Historical firm yield (M.m ³ /a):	68.9	94.9	120.2	140.2	138.5	138.5	138.5			
Historical firm yield (m ³ /s)	2.2	3.0	3.8	4.4	4.4	4.4	4.4			
Rustfontein used before Welb	edach	t (as fo	or Prac	tical 5)						
Channel 121 capacity (m ³ /s)	2.0	3.0	4.0	5.0	6.0	7.0	8.0			
Historical firm yield (M.m ³ /a):	53.0	80.1	99.5	119.1	144.5	157.1	157.1			
Historical firm yield (m ³ /s)	1.7	2.5	3.2	3.8	4.6	5.0	5.0			
							DWAF (May			

	-		
		doto	CORVOIRC
			 SELVOILS
<u> </u>			

Reservoir name	Full supply volume (million m³)	Dead storage volume (million m ³)	Live storage volume (million m³)	Incremental MAR (million m ³ /a)
Caledon River catc	hment			
Welbedacht Dam	21.45	5.12	16.33	1 196.0
Knellpoort Dam	136.95	6.75	130.20	20.8
Modder River catcl	nment			
Rustfontein Dam	72.21	0.17	72.04	28.6
Groothoek Dam	15.01	1.42	13.59	6.4
Mockes Dam	4.63	1.32	3.31	78.2
				DWAF (May 2

System	detail	s: strean	nflow
--------	--------	-----------	-------

	Incremental	Naturalised MAR (1920 – 1987)					
Catchment	area (km²)	mm/a	million m³/a	SD	с٧		
Caledon River catc	hment						
Welbedacht Dam	15 245	78.5	1 196.0	832.8	0.7		
Knellpoort Dam	798	26.1	20.8	32.9	1.6		
Modder River catch	iment						
Rustfontein Dam	940	30.4	28.6	43.2	1.5		
Groothoek Dam	166	38.6	6.4	7.3	1.1		
Mockes Dam	1 982	39.5	78.2	94.1	1.2		
					DWAF (May 2		

System details: channel constraints and losses

Channel number	Description	Quantity
31	Mockes Dam to system yield	1.04 m³/s
121	Welbedacht Dam to demand centres	1.16 m³/s
22	Loss 1	10 %
27	Loss 2	15 %
32	Loss 3	5 %
40	Loss 4	5 %
		DWAF (May 20

DWAE (May 20

Operational details

- Mockes Dam used first for system yield
- · Welbedacht kept full by releases from Knellpoort
- No releases from Groothoek
- Welbedacht used before Rustfontein
- Demand channel 28 takes priority over main system yield (channel 30)
- Demand channel 38 low priority only supplied if Welbedacht spills
- Spill channel 34 penalty causes change in supply priority to Modder system (Rustfontein) when spilling

DWAF (May 2005

DWAF (May 2005

Purpose and methodology Purpose:

- Develop draft-yield line
- Determine historical firm yield

Methodology:

- Select WRYM-IMS study as defined under [Caledon-Modder]; [Training]
- Analyse a range of target drafts and document yield results in table
- Draw Draft vs. Yield-line

le Edit Wew Model Data Wizar	nds Help	1 al -						
leturyt Data File File Powers	Model Capabilitu	<u>• • •</u>		· · · · · · ·	+1			
E Configuration	(harnel Propeting	Master Control Fe	stute Persalty St	in schuter]				1
- Run Configuration	a an an an against		- [r a ally 5		_	_		
Uutput Configuration Haster Control Configuration	Feature name :	SYSTEM	I YIELD FOR BLC	IEM .				
SYSTEM YIELD FOR BL	Channel sub-type :	Water		-				
	Load cases Target system ? yield [million m3/a]	Aaximum system yield (million m3/a)	Target power demand (MW-continuous)	Include In Analysis		Monthly water upply distribution factors	Morthly target dealt @ million m3/m C m3/s	
- VELBEDACHT DAM	50.00	50.00	0.00	V	OCT	1.05	4.37	
V 4 - KNELLPOORT DAM	45.00	45.00	0.00	V	NOV	1.10	4.58	
9 MOCKES DAM	40.00	40.00	0.00		DEC	1.13	4.71	
• Nodes	35.00	30.00	0.00		JAN	1.25	5.21	
	30.00	30.00	0.00		FEB	1.10	4.58	
🗉 💮 Output Files	25.00	20.00	0.00		MAR	0.97	4.04	
Network Visualiser	15.00	15.00	0.00	V	APB	0.88	3.67	
	10.00	10.00	0.00	V	MAY	0.86	3.58	
	5.00	5.00	0.00		JUN	0.83	3.46	
			,		JUL	0.83	3.46	
					AUG	0.95	3.96	
					SEP	1.05	4.37	
						12.00	50.00	

en mittals ver 2000 (merd)					_ E 🖻 🞽
Ele For New Goost Geb					
Network Data File Edit Hesuits M	odel Capability				
 System Yield Historical Yield Results 	System Yield				
- Stochastic Yield Results	TD (Million m3/a)	Deficits (Proportion)	Yield (Million m3/a)		
	50.00	0.39	30.50		
	45.00	0.16	37.80		
	40.00	0.00	40.00		
	35.00	0.00	35.00		
	30.00	0.00	30.00		
	25.00	0.00	25.00		
	20.00	0.00	20.00		
	15.00	0.00	15.00		
	10.00	0.00	10.00		
	5.00	0.00	5.00		
	1				
fare line l					

3. <u>Practical</u>: Evaluating system operating rules

Purpose and methodology Purpose:

 Determine operating rule for higher historical firm yield

Methodology:

- Use same study definition as for previous practical, [Caledon-Modder]; [Training]
- Change supply priority to Rustfontein
- Determine historical firm yield
- Compare with results from Previous Prac

DWAF (May 2005

DWAF (May 2005)

No. Edit View Model Data Wizards He	sh de					کا النا اللا
		+* -* +* -* +*	** *-			
Network Data Pee Edit Results Model L	сарабику					
Configuration Bun Configuration	Properties Evaporatio	on Physical Characteristics	Catchment Hydrology	Penalty Structures Zon	e Elevations	
Output Configuration Master Control Configuration	Zone 	Penaly 	View C Penaly	C Reservoir	Rule Curve	1 🕅 🕅 Balancing Data
- SYSTEM YIELD FOR BLOEM	Zone Name S V	R Penalty Structure 1	Penalty Structure 2	Penalty Structure 3	Penalty Structure 4	Penalty Structure 5
- Reservoir Penalty Structures	SURCHG 3 0	0 1000	1000	1000	1000	1000
Reconciliation Analysis	DRDWN1 3 0	0 10	0	2	15	2
E V Reservoirs	DRDWN2 3 0	0 25	20	40	30	20
V 10 - GROOTHUEK DAM	DSL 3 0	0 10000	10000	10000	10000	10000
P To ANDER DAM P TO AND	6	10.6R00TH0E 2:wELEEDACH	KNELLPOORT	S S NUCKES DAY	- 8 - RUSTFONTEIN	C D
Grid Graph						
SubArea: Caledon-Modder	Caledon-Modder					
	- 17					

Interpretation

- For the operating rule *Welbedacht used before Rustfontein*, what is the historical firm yield?
- For the operating rule *Rustfontein used before Welbedacht*, what is the historical firm yield?
- Which operating rule results in a higher historical firm yield?

4. <u>Practical</u>: Evaluating development options

Purpose

Practical divided into two parts:

• <u>Part 1</u>:

Evaluate possible development options to increase historical firm yield

• Part 2:

Determine preferred operating rule for selected development option

Observations

- <u>Welbedacht Dam</u>: Maintained at FSL for entire analysis
- <u>Knellpoort Dam</u>: Under-utilised
- Rustfontein Dam:

Used extensively and emptied in the 1933 hydrological year

DWAF (May 2005)

DWAF (May 2005

Part 1: Methodology

- Use same study definition as for previous practical, [Caledon-Modder]; [Training]
- Define single target draft, equal to system historical firm yield (= 32.6 million m³/a)
- Execute model and import results
- Create chart to view simulated reservoir volume results (use *Normalised*-view)
- Focus on Welbedacht, Knellpoort and Rustfontein

Possible development options

- Raise Rustfontein Dam
- Raise Knellpoort Dam
- Increase capacity of Tienfontein pumping station (channel 20)
- Increase capacity of transfer from Mockes Dam (channel 31)
- Increase capacity of transfer from Welbedacht (channel 121)

Part 2: Methodology

- Use same study definition as for previous practical, [Caledon-Modder]; [Training]
- Analyse system with range of capacities for channel 121
- Use functionality to determine historical firm yield automatically
- Document results in table and draw Channel Capacity vs. Yield-line
- Repeat with system configured for both operating rule options

DWAF (May 2005)

El WRIAM Ver 21910 (Vield) Ele Edit Yew Model Data Wicards He E: 🖘 🙌 📓 🍊 🕱 🏠 🍉	
 Network DVa [F#E/B] Result Model 	Statistic Function
	Image: Second

Min-max Flow Feature-dialog New Model Data Wizards Help work Data File Edit Results Model Capability A Configuration Channel Properties Min-max Flow Feature Penalty Structure V Reservoirs Nodes Nodes Channels Orversion Chare −=± Minimum Flow C + = Loss Channels +# Marca Feature name : PIPE: WELB TO BLOEM Firm yield analysis required ? 🔲 (In addition to master control) Arc 1 OCT 1.16 NOV 1.16 DEC 1.16 JAN 1.16 MAR 1.16 MAR 1.16 JUN 1.16 JUN 1.16 JUN 1.16 JUN 1.16 JUL 1.16 Flow constraints (m3/s) : Loss Unarineis Multi-Purpose Min-Max Channels E Multi-Purpose Mim-Max Channels 22 80- 600 2.2 0075448EL0 21 28 - 600 2.2 0075448EL0 21 31 - PIFE: MODDER TO BLOEM 21 33 - DEM 31 HIRA NOHU 21 33 - DEM 31 HIRA NOHU 21 33 - DEM 11 HIRA COMP RELEASE 21 212 - MPE CALEDON TO BLOEM 0. Purping Channels 0. Densmd Channels 0. Densmd Channels Totals 35.6363 (million m3/year) Reus constraints: Monthly maximum Reus constra Grid Graph ubArea: Caledon-Modde Caledon-Modde Training Model Type : Yield Training Study : Water Resource System Analysis DWAF (May 2005

Bie Edit View Model Data Wizards Heip E: So N? 25 (S) X 10 (S) (K) Natural: Data File Fail Benetic Markel Can		9 9 9 4 2					
E Configuration	Channel Properties Master Control	Feature Penalty Structures					
 Run Configuration Dutput Configuration 	Extension VIED FOR BLOEM						
Master Control Configuration CONTROL OF DE OFFICE	Channel sublume:						
Channel Penalty Structures Reservoir Penalty Structures Reconciliation Analysis V Reservoirs	Load cares Target system Maximum syste yield (million yield (million m3/a) m3/a)	m Target power Include In demand Analysis (MW-continuous)		Monifuly water upply distribution factors	Monthly target draft million m3/m C m3/s		
E Victoria	200.00 200.00	0.00	OCT	1.05	17.50		
Network Features	20.00 20.00	0.00	NOV	1.10	18.33		
Network Visualiser			DEC	1.13	18.83		
			JAN	1.25	20.83		
			FEB	1.10	18.33		
			MAR	0.97	16.17		
			APR	0.88	14.67		
			MAY	0.86	14.33		
		E E	JUN	0.83	13.83		
			JUL	0.83	13.83		
	Target system yield disabled for firm yield	Calculate Historic	AUG	0.95	15.83		
			SEP	1.05	17.50		
				12.00	200.00		
5id Graph	Triek: Target system yield for each	n load case in descending order(mil	ion m3/a)				
Grid Graph							
	Para and and an						

🖁 WRIMS Ver 2.8.0 (Yield)					. 8			
Elle Edit Yew Model Help								
5 (s) 🕺 😹 🎒 🖾 🛸 🛸	2 🕰 🔟 😥							
Network Data File Edit Results Model	Capability							
E System Yield	System Yield							
Stochastic Yield Results	TD (Million m3/a)	Deficits (Proportion)	Yield (Million m3/a)					
	68.86	0.00	68.86					
	75.75	0.24	57.57					
	82.64	0.31	57.82					
	89.53	0.36	57.30					
	96.42	0.41	56.89					
	103.31	0.45	56.82					
	110.20	0.48	57.30					
	117.09	0.51	57.37					
	123.98	0.54	57.03					
	130.87	0.56	57.58					
Beit TSC YBC								

Description		Channel 121 capacity and corresponding yield results							
Welbedacht used before Rustfontein									
Channel 121 capacity (m ³ /s)	2.0	3.0	4.0	5.0	6.0	7.0	8.0		
Historical firm yield (M.m ³ /a):									
Historical firm yield (m ³ /s)									
Rustfontein used before Welbedacht									
Channel 121 capacity (m ³ /s)	2.0	3.0	4.0	5.0	6.0	7.0	8.0		
Historical firm yield (M.m ³ /a):									
Historical firm yield (m ³ /s)									

Interpretation

- For *Welbedacht used before Rustfontein*, what is the yield with a Channel 121 capacity of 7.0 m³/s?
- For *Rustfontein used before Welbedacht*, what is the yield with a Channel 121 capacity of 7.0 m³/s?
- Which operating rule results in a higher yield with a Channel 121 capacity of 7.0 m³/s?
- How does this compare with results obtained from previous practicals, where the Channel 121 capacity was 1.16 m³/s?
- What general lesson can be learned from the above observation?

Results	
	DWAF (May 2005)

Completed table									
Description	Channel 121 capacity and corresponding yield results								
Welbedacht used before Rustfontein (as for Practical 4)									
Channel 121 capacity (m ³ /s)	2.0	3.0	4.0	5.0	6.0	7.0	8.0		
Historical firm yield (M.m ³ /a):	68.9	94.9	120.2	140.2	138.5	138.5	138.5		
Historical firm yield (m ³ /s)	2.2	3.0	3.8	4.4	4.4	4.4	4.4		
Rustfontein used before Welbedacht (as for Practical 5)									
Channel 121 capacity (m ³ /s)	2.0	3.0	4.0	5.0	6.0	7.0	8.0		
Historical firm yield (M.m ³ /a):	53.0	80.1	99.5	119.1	144.5	157.1	157.1		
Historical firm yield (m ³ /s)	1.7	2.5	3.2	3.8	4.6	5.0	5.0		
DWAF (May 2									

A: Current system

- Determine surplus yield in Orange River Project with all downstream demands in place:
- What is the average flow through channels 169 & 228: (the lower Orange demands):
- What is the annual evaporation loss from Gariep Dam:

B: Inclusion of Polihali Dam

- Turn Polihali dam on
- Move yield channel to Polihali Dam
- Add channel onto node 143 and abstract HFY obtained in scenario A (37 mill m3/a = 1.172 m3/s) from node 143
- Determine Polihali HFY:
- What is the average flow through channels 169 & 228: (the lower Orange demands)
- What is the average VDK release, channel 47:

Upper Orange Sengu System

DWAF (May 200

lo Vaai Dam

THE OWNER

C: Polihali Dam supports Gariep

- Add support channel from Polihali to Gariep (node 63): general flow channel, with penalty = 50
- Change the yield channel's penalty from 155 to 90
- Determine Polihali surplus yield:
- What is the drop in yield as a result of Polihali's support
- What is the average support required
- What is the average flow through channels 169 & 228: (the lower Orange demands)
- What is the annual evaporation loss from Gariep Dam
- What is the saving in evaporation at Gariep as a result of Polihali Dam

DWAF (May 2005)

DWAF (May 20

B: Inclusion of Polihali Dam

- Turn Polihali dam on
- Move yield channel to Polihali Dam
- Add channel onto node 143 and abstract HFY obtained in scenario A (37 mill m3/a = 1.172 m3/s) from node 143
- Determine Polihali HFY: 409 Mm3/a
- What is the average flow through channels 169 & 228: (the lower Orange demands) 2.096 cumec, 21.993 cumec
- What is the average VDK release, channel 47: 103.756 cumec

A: Current system

- Determine surplus yield in Orange River Project with all downstream demands in place: 37 Mm3/a
- What is the average flow through channels 169 & 228: (the lower Orange demands): 2.118 cumec, 22.278 cumec
- What is the annual evaporation loss from Gariep Dam: 16.949 cumec

C: Polihali Dam supports Gariep

DWAF (May 2005

- Add support channel from Polihali to Gariep (node 63): general flow channel, with penalty = 50
- Change the yield channel's penalty from 155 to 90
- Determine Polihali surplus yield: 393 Mm3/a
- What is the drop in yield as a result of Polihali's support 409 – 393 = 16 Mm3/a
- What is the average support required 3.147 cumec
- What is the average flow through channels 169 & 228: (the lower Orange demands) 2.118 cumec, 22.278 cumec
- What is the annual evaporation loss from Gariep Dam 15.410 cumec
- What is the saving in evaporation at Gariep as a result of Polihali Dam 16.949 – 15.410 = 1.539 cumec

A: Current system

- Check surplus yield in Orange River Project with all downstream demands in place. Should be the same as for Polihali case study current system
- What is the average flow just down stream Neckartal Dam site (channel 110)
- What is contribution from the Fish to the Orange (Channel 221)
- What is the total flow at the Orange River mouth and check EWR (channel 247 & 220)

B-2: Neckartal / Vanderkloof

- Move yield channel to Vanderkloof Dam (Node 143)
- Impose Neckartal Yield as demand on the dam (use min max channel 300)
- Determine surplus yield available at Vanderkloof (ORP surplus)
- What is the total flow at the Orange River mouth and check EWR (channel 247 & 220)

B: Inclusion of Neckartal

- Turn Neckartal dam on
- Move yield channel to Neckartal Dam
- Determine Neckartal Dam HFY
- What is the average flow just down stream Neckartal Dam site (channel 110)
- What is contribution from the Fish to the Orange (Channel 221)
- What is the total flow at the Orange River mouth and check EWR (channel 247 & 220)

DWAF (May 2005

DWAF (May 2005

C: Include EWR for Neckartal

- Use data set as for scenario B:
- Include EWR channel 302 from node 301 to 77 (min max channel two arc penalty 0 – 550)
- Include EWR's using IFR pre-prosessor
- Determine the yield at Neckartal Dam with EWR in place. What is the reduction in yield
- What is the average flow just down stream Neckartal Dam site and EWR (channel 110 & 302)
- What is contribution from the Fish to the Orange (Channel 221)
- What is the total flow at the Orange River mouth and check EWR (channel 247 & 220)

DWAF (May 200

DWAF (May 2005

C-2: Neckartal EWR/ Vanderkloof

- Move yield channel to Vanderkloof Dam
- Impose Neckartal Yield as demand on the dam (use min max channel 300)
- Determine surplus yield available at Vanderkloof (ORP surplus)
- What is the total flow at the Orange River mouth and check EWR (channel 247 & 220)

			Re	esul	ts				
Scenario description	ORP surplus Yield (chan 177) mcm/a	Neckartai Yield (chan 177) mcm/a	EWR (chan 302) mcm/a	eckartal Total (chan 110) mcm/a	(Chan mcm/a	221) cm/s	EWR (Chan 220) mcm/a	at OR Mou To (Chai mcm/a	tal n 247) cm/s
e Scenario									
kartal no EWR									
kartal & EWR									
								DWA	⁼ (May 2005)

	Results											
Scenario description	ORP surplus Yield (chan 177)	Neckartal Yield (chan 177)	Flow d/s N EWR (chan 302)	low d/s Neckartal WR Total chan 302) (chan 110)		Fish Outflow (Chan 221)		Flow at OR Mou EWR Tot (Chan 220) (Chan				
Base Scenario	mcm/a 37	mcm/a 0	mcm/a 0	mcm/a 376	mcm/a 441	cm/s 13.969	mcm/a 1051	<mark>mcm/a</mark> 4185	cm/s 132.629			
Neckartal no EWR	21	91	0	215	302	9.566	1051	4081	129.330			
Neckartal & EWR	23	73	35	233	306	9.696	1051	4085	129.457			
								DWAF	(May 2005)			

APPENDIX B1:

Workshop Programmes, Attendance Registers and Feedback Forms

Workshop Programmes

ORASECOM Water Resource Modelling Training Course For Decision Makers 29 – 30 November 2010

Sch	edule	
Start time	Duration	
		Day 1
10:00	00:15	Welcome
10:15	00:30	Introduction
		Module 1: The Integrated Orange Vaal River System
10:45	01:00	1. Description of the Study Area
11:45	00:15	2. Improvements extensions - ORASECOM Study
12:00	01:00	3. Description of Operating Rules
13:00	00:15	4. Group discussion
13:15	00:45	Lunch break
		Module 2: Overview of Water Resource Management
14:00	00:30	1. Overview of Water Resource Management
11.00	00.05	Module 3: Water Resource Assessment
14:30	00:25	1. Modelling Water Resources Systems
14:55	00:25	2. Basic modelling principles
15:20	00:15	2 Definition of terms
15.35	00.15	3. Definition of terms
15.50	00.30	4. Stochastic yield analysis
16:35	00.15	Closure
10.55		Dox 2
08.30	00:15	Welcome: Poview of Day 1
00.50	00.15	Module 4: Water Pesource Allocation
08.45	00.10	1 Water Lise Criteria
08:55	00:40	2 Short-term Yield reliability
09:35	00:30	3 Curtailing Water Users
10:05	00:15	Tea break
10:20	00:20	4. Assessing availability for licensing
10:40	00:15	5. Group discussion
		Module 5: Management of Water Resource Systems
10:55	00:45	1. Defining System Operating Rules
11:40	00:30	2. Practical conciderations
12:10	00:15	3. Group discussion
12:25	00:45	Lunch break
		Module 6: Intervention Planning
13:10	00:15	1. Introduction
13:25	00:20	2. Water requirement scenarios
13:45	00:30	3. Undertaking detailed phasing analysis
14:15	00:15	Tea break
14:30	00:45	4. Reconciliation Strategies
15:15	00:15	5. Group discussion
15:15		Close

ORASECOM Water Resource Modelling Training Course For Decision Makers 25-janv-11

Sch	edule	Training module
Start time	Duration	
		Day 1
08:15	00:15	Welcome
08:30	00:15	Introduction Medule 4: The Integrated Orange Veel Diver System
08.45	01.00	1 Description of the Study Area
09:45	00:15	2. Improvements extensions - ORASECOM Study
10:00	00:10	Tea break
10:10	00:30	Module 2: Overview of Water Resource Management 1. Overview of Water Resource Management
10:40 11:05 11:30 11:45	00:25 00:25 00:15 00:25	 Module 3: Water Resource Assessment 1. Modelling Water Resources Systems 2. Basic modelling principles 3. Definition of terms 4. Stochastic yield analysis
12:10	00:30	Lunch break
12:40 12:50 13:20 13:35 13:50 14:25 14:55	00:10 00:30 00:15 00:15 00:35 00:30 00:15	 Module 4: Water Resource Allocation 1. Water Use Criteria 2. Short-term Yield reliability 3. Curtailing Water Users 4. Assessing availability for licensing Module 5: Management of Water Resource Systems 1. Defining System Operating Rules 2. Practical conciderations 3. Description of Existing Operating Rules
15:10	00:10	Tea break
15:20 15:35 15:55 16:15 17:00	00:15 00:20 00:20 00:45	Module 6: Intervention Planning 1. Introduction 2. Water requirement scenarios 3. Undertaking detailed phasing analysis 4. Reconciliation Strategies Closure

Attendance Registers

Course:	Support to Phase 2 of the ORASECOM Bas	in-wide Integrated	Water Resources Management Plan
	Training on Water Resources Modelling -	Decision Makers	
Presenters:	Pieter van Rooyen, Manie Maré & Ronnie	Mckenzie	
Venue:	WRP(Pty) Ltd, Pretoria Office	Date:	29-30 November 2010

Name	Position	Organization	Telephone	Cell phone	E-mail
OBED GOZA	ENGINEEC	NEDT OF WATER ARARI	012 336 8096	0739359546	obgoza@yahac, com
THATOSOKO		WATER AFFAIS ROTSWANA	+2673607383	+267 71490378	Hard Coko @ 201.
LESHOBORO NENA	1. Sizaroasint	DWA-LESOTHO	1200122317991	266 58444653	nere @ dwa. gov. W
					4
Peter van Nreter	WE Expert	bud . esd	+27 \$12 336 876 2	+27 82 807 4981	miter (deva. genja)
KAMOSOGU	PRINCIPAL	WATER COMMISSION-LES	+2459095737	4.766270824945.4	Pamercen Kdisker
RAPULE Pule	KIATER RESOURCE	SPECEALUST	+27722304669	8 Juse tttt	niloso adina par 20
TENDAYI MAKOMBE	WATER REDOURCE ENGINEER	JWA: 2SA	427123568503	+27(83)662 1414	makombet Dolwa. on. Ea
LENKA THAMAE	Executives	ORAS FCOM	2772 376	ic	Leaka than i
	7				

P:\External_Training\RR\P0001_WRM Training\Attendance Register ORASECOM-Water Resources Modelling - Decision Makers.doc Last updated: 22/11/2010

			A Miya Company
1	11	2	Group (
			j

Attendance Register

Course:	Support to Phase 2 of the ORASECOM Bas	in-wide Integrated	Water Resources Management Plan
	Training on Water Resources Simulation	Models -Orange	
	For Decision Makers (1 Day Training)		
Presenters:	Ronnie McKenzie, Pieter van Rooyen & Mi	anie Maré	
Venue:	WRP(Pty) Ltd, Pretoria Office	Date:	25 January 2011

	E-mail	bapelal @ dwa.gov.za	openingra 1/2016	Khown actsa was way	akatai Const	LWSipoles@Maley Jahora, Lenn	Malachamela eganoco	Polith Duts Blansit Cours	densi gomung und	lenka thanael
	Cell phone	+82 902 81 61			7567 72324957			b gg Hazzet Ett	9837 F2457 7239	0723768888
sent	Telephone	+2712 336 8324	\$ 082 SEZUSON	+26622323698	+267 2656667	F266-22320127	+266 2232 7413	42712643093418	- n _	27 126430934
Pres	Organization	berto Prater Affairs (Securitor Affairs	ORASECONI SECRE TARAT	1 LESONA	Bokeyana	LESOTHO	LESOTHO	S ORASECOM	LIND -	okrete com
	Position	Scientific Navoger	Ent PROFES	beguty principal	Coundinated	CENTILISIONER	Director LLWBU	KIATER RESOURCE SHECLARIST	Piopech Prompus	Ex. Sec.
	Name	LERATO BAPELA	9,4014 Quissie	Khomeatsana lau	Othusike Katai	E. LESO MA	F. Malachamola	R. Prele	Christoph has	LEWKA THAMAC

P:\External_Training\RR\P0001_WRM Training\Attendance Register ORASECOM-Water Resources Simulation Models - Decision Makers 1 Day training.doc Last updated: 24/01/2010

Feedback Forms

Commissioned by: Commissioned by: Commissioned by: Defended Ministry For Economic Cooperation and Development In Delegated Cooperation with: Ministry Commissioned by: Support to Phase 2 of the ORASECOM Basin-wide Integrated Water Resources Management Plan

Training on Water Resources Simulation Models -Orange For Decision Makers

> 25 January 2011 Pretoria

Feedback Form

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

Name (optional): __Kalai

Course: AS NOVE (TRAINING)

Date: 25-01-2011

Rate the following on a scale of 1 (poor) to 5 (excellent):

Venue Sty on Charlie	1	2	3	4	5
Food Quality	1	2	3	4	5
Event speakers					
Pieter van Rooyen	1	2	3	4	5
Manie Maré	1	2	3	4	5
Ronnie Mckenzie	1	2	3	4	5
ж.					
Quality of information	1	2	3	4	5
Usefulness	1	2	3	4	5
Meeting your needs	1	2	3	4	5
Overall quality of the workshop	1	2	3	4	5

Any comments	or suggestions:
Interesting	but rectra

COON

Thank you for your feedback

Please return this form today or fax to +27 12 346-9956 QUAN Q

mone

Support to Phase 2 of the ORASECOM **Basin-wide Integrated Water Resources Management Plan**

Training on Water Resources Simulation Models - Orange For Decision Makers

> 25 January 2011 Pretoria

Feedback For

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

Name (optional): _____

Date: _

Course: Simulation models - for Decision makers, Date: 25/1/2011

Rate the following on a scale of 1 (poor) to 5 (excellent):

Venue	1	2	3	4	5
Food Quality	1	2	3	Þ	5
Event speakers					
Pieter van Rooyen	1	2	3	4	5
Manie Maré	1	2	3	4	6
Ronnie Mckenzie	1	2	3	4	6
Quality of information	1	2	3	4	6
Usefulness	1	2	3	4	(5)
Meeting your needs	1	2	3	4	5
Overall quality of the workshop	1	2	3	4	5

	100
Any comments or suggestions:	0
- Hotel should be encouraged to include	more
Variety for Leuch.	ß
may	need
- Overall very we frequent tramin	gat
WRP_A0001_Admin_Course Feedback Forms	Graphic 39.cdr

Thank you for your feedback

hissioned by:

In Delegated Cooperation with:

UKaid

qtz

Federal Ministry for Economic Cooperation and Development

Aid Program

In Delegated Cooperation with:

Aid Prostran

UKaid

Support to Phase 2 of the ORASECOM Basin-wide Integrated Water Resources Management Plan

Training on Water Resources Simulation Models -Orange For Decision Makers

> 25 January 2011 Pretoria

Feedback Form

MOS

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

hallon

Name (optional): _____

Course:_

Date: _

Rate the following on a scale of 1 (poor) to 5 (excellent):

Venue	1	2	3	4 5
Food Quality	1	2	3	4 5
Event speakers				
Pieter van Rooyen	1	2	3	4 5
Manie Maré	1	2	3	4 5
Ronnie Mckenzie	1	2	3	4 5
Quality of information	1	2	3	4 5
Usefulness	1	2	3	4 5
Meeting your needs	1	2	3	4 5
Overall quality of the workshop	1	2	3	4 5

Thank you for your feedback

In Delegated Cooperation with:

Australian Covernmen

UKaid

qtz

Support to Phase 2 of the ORASECOM Basin-wide Integrated Water Resources Management Plan

Training on Water Resources Simulation Models -Orange For Decision Makers

> 25 January 2011 Pretoria

Feedback Form

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

Name (optional):

Course: Water Respusses Simulation Rodelts

Date: 25/01/2011

Rate the following on a scale of 1 (poor) to 5 (excellent):

Venue	1	2	3	4 (5)
Food Quality	1	2	3	(4) 5
Event speakers				
Pieter van Rooyen	1	2	3	4 (5)
Manie Maré	1	2	3	4 5
Ronnie Mckenzie	1	2	3	4 5
Quality of information	1	2	3	4 5
Usefulness	1	2	3	4 5
Meeting your needs	1	2	3	4 5
Overall quality of the workshop	1	2	3	4 5

Any comments or suggestions: Fime Too ruch information Would have been

Thank you for your feedback

UKaid

Aid Po

Support to Phase 2 of the ORASECOM Basin-wide Integrated Water Resources Management Plan

Training on Water Resources Simulation Models -Orange For Decision Makers

> 25 January 2011 Pretoria

Feedback Form

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

Name (optional): _

C	0	u	ľ	S	e	

Date: -

Rate the following on a scale of 1 (poor) to 5 (excellent):

Venue	1	2	3	4	5
Food Quality	1	2	3	4	5
Event speakers					
Pieter van Rooyen	1	2	3	4	5
Manie Maré	1	2	3	4	5
Ronnie Mckenzie	1	2	3	4	5
Quality of information	1	2	3	4)	5
Usefulness	1	2	3	4	5
Meeting your needs	1	2	3	4	5
Overall quality of the workshop	1	2	3	4	5

Any comments or suggestions:

ank you for

A Miya Group Company

Thank you for your feedback

Support to Phase 2 of the ORASECOM Basin-wide Integrated Water Resources Management Plan

Training on Water Resources Simulation Models -Orange For Decision Makers

> 25 January 2011 Pretoria

> > 0

Feedback Form

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

Name (optional): Emmanuez M. (ESOMA

Course:	ORASEGON WATER REOURCE MODELLING TRAINING	
	COURSE FOR DECISION MAKING	
Date:	25" JANUARY, 2011	

Rate the following on a scale of 1 (poor) to 5 (excellent):

Venue	1	2	3	4	(5)
Food Quality	1	2	3	4	5
Event speakers					
Pieter van Rooyen	1	2	3	4	5
Manie Maré	1	2	3	4	5
Ronnie Mckenzie	1	2	3	4	5
Quality of information	1	2	3	4	5
Usefulness	1	2	3	4	5
Meeting your needs	1	2	3	4	5
Overall quality of the workshop	1	2	3	4	(5)

Any comments or suggestions:

THE MODEL IS HIGHLY NEEDED, ESSENTIAL FOR

PROPER MANASEMENT OF ORANGE-SENQU RIVER BASIN IT MUNT BE ENDORSED BY FOUR (4) MEMBER STATES AS UNIVERSAL TOOL FOR DECISION WARNOG

Thank you for your feedback

In Delegated Cooperation with:

Aid Pros

Support to Phase 2 of the ORASECOM Basin-wide Integrated Water Resources Management Plan

Training on Water Resources Simulation Models -Orange For Decision Makers

> 25 January 2011 Pretoria

Feedback Form

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

Name (optional):	1	AU			
12400	\wedge	<i>i</i> 1	0	 1	1

Course: Walk R. Modeling (ORASECOM Date: 25(0,

Rate the following on a scale of 1	(poor)	to	5 (exc	celler	nt):	nite
Venue	1	2	3	Ø	5	at R
Food Quality	1	2	3	4	5 N.	hoice
Event speakers						
Pieter van Rooyen	1	2	3		5	
Manie Maré	1	2	3	O	5	
Ronnie Mckenzie	1	2	3	4	5	
Quality of information	1	2	3	4	5	
Usefulness	1	2	3	4 C	95	
Meeting your needs	1	2	3	4	5	

Any comments or suggestions: much into an Short pacst ARTHICK DE the innea WRP A0001 rse Feedback Forms Graphic lould have been Lesoth

Overall quality of the workshop..... 1 2 3

Thank you for your feedback

Support to Phase 2 of the ORASECOM Basin-wide Integrated Water Resources Management Plan

Training on Water Resources Simulation Models -Orange For Decision Makers

> 25 January 2011 Pretoria

Feedback Form

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

Name (optional): GANN QUERELL

Course: WATER RESOURCE	MODELINC	DECISION WARE
	1	

Date:	25	01	12011
		1	

Rate the following on a scale of 1 (poor) to 5 (excellent):

, ,	. ,				
Venue	1	2	3	4	5
Food Quality	1	2	3	4	5
Event speakers					
Pieter van Rooyen	1	2	3	4	5
Manie Maré	1	2	3	4	5
Ronnie Mckenzie	1	2	3	$\overline{4}$	5
Quality of information	1	2	3	4	5
Usefulness	1	2	3	4	5
Meeting your needs	1	2	3	4	5
Overall quality of the workshop	1	2	3	4	5

Any commen	ts or si	uggestions:			(5
THIS	1414	MADE	THE	TASIK	SF	
DESIGNINC	IN	STITUTION	42 t	GOVER	MANC	Ē
ARRANGEN	1Enu	TS EASI	ER.	PITY		
KAMIBIA	WAS	MOT	WRP_A0001_	Admin_ Course Feedba	ck Forms_Graphic	39.cdr

Thank you for your feedback

Federal Ministry for Economic Cooperation and Development

alian Cover

In Delegated Cooperation with:

UKaid

gtz

gtz 🕸 Federal Ministry for Economic Cooperation and Development

In Delegated Cooperation with:

UKaid

Support to Phase 2 of the ORASECOM Basin-wide Integrated Water Resources Management Plan

Training on Water Resources Yield Model -Orange For Decision Makers

> 29 - 30 November 2010 Pretoria

Feedback Form

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

Name (optional): Obed Goza

Course:	mield	model	for	decira	mater
			(

Date: 29-30 Nov 2010

Rate the following on a scale of 1 (poor) to 5 (excellent):

Venue	1	2	3	4	5
Food Quality	1	2	3	4	5
Event speakers					
Pieter van Rooyen	1	2	3	4	5
Manie Maré	1	2	3	(4)	5
Ronnie Mckenzie	1	2	3	4	5
Quality of information	1	2	3	4	5
Usefulness	1	2	3	4	5
Meeting your needs	1	2	3	Q	5
Overall quality of the workshop	1	2	3	4	5

Any comments or suggestions: such

Please return this form today or fax to +27 12 346-9956

Thank you for

your feedback

A Miya Group Company

201

0

UKaid

Support to Phase 2 of the ORASECOM Basin-wide Integrated Water Resources Management Plan

Training on Water Resources Yield Model -Orange For Decision Makers

> 29 - 30 November 2010 Pretoria

Feedback Form

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

Name (optional): SETLOBOKOL THATO SETH

Course: TRAINING	ON	WRYM	FOR	DECISION	MAKERS
Date: 29th AND	30th	NOVEMB	ER	2010	

Rate the following on a scale of 1 (poor) to 5 (excellent):

Venue	1	2	3	4	E
Food Quality	1	2	3	4	5
Event speakers					
Pieter van Rooyen	1	2	3	4	5
Manie Maré	1	2	3	×	5
Ronnie Mckenzie	1	2	3	4	-Ja
Quality of information	1	2	3	4	A
Usefulness	1	2	3	4	T
Meeting your needs	1	2	3	4	5
Overall quality of the workshop	1	2	3	4	5

Any com	nents o	r sugges	tions:			۲	
MAY	BE C	FFER	THE	Confise	(0)	25's	_
AND	DG	WHO	ARE	MORE	LLOSS	ER TO	
MIN	STERS	. WHO	ULTI	MATELY	MAK	E DECIS	ION

Thank you for your feedback

	SENGI	RIV,	ERCO	2
1			SAL	IISSI
0	ORA	SEC	OM	N
1	1995	9%	THAT	/
	1000	hishol 1	Strat.	

Commissioned by:

gated Cooperation with:

UKaid

Federal Ministry for Economic Cooperation and Development

Support to Phase 2 of the ORASECOM **Basin-wide Integrated Water Resources Management Plan**

Fraining on Water Resources Yield Model - Orange For Decision Makers

> 29 - 30 November 2010 Pretoria

Feedback Form

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

Name (optional):

Course:	WRSM	é	WRPM
Date:	30/11/10		

Rate the following on a scale of 1 (poor) to 5 (excellent): Venue WHP OFFICES 2 1 3 5

Food Quality	1	2	3	4	5
Event speakers					
Pieter van Rooyen	1	2	3	4	5
Manie Maré	1	2	3	4	5
Ronnie Mckenzie	1	2	3	4	5
Quality of information	1	2	3	4	5
Usefulness	1	2	3	4	5
Meeting your needs	1	2	3	4	5
				\cap	

your feedback

Please return this form today or fax to +27 12 346-9956 MORE OF THESE TRAINING COURSES

(4)

5

qtz

Commissioned by: Federal Ministry for Economic Cooperation and Development

d Cooperation with:

UKaid

Support to Phase 2 of the ORASECOM Basin-wide Integrated Water Resources Management Plan

Training on Water Resources Yield Model -Orange For Decision Makers

> 29 - 30 November 2010 Pretoria

Feedback Form

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

Name (optional): TENDAY, MAROMBE

Course: WRYM - ORANGE - FOR DECISION MURLERS

Date: ______ 29-30 November 2010

Rate the following on a scale of 1 (poor) to 5 (excellent):

Venue	1	2	3	(I)	5
Food Quality	1	2	3	D	5
Event speakers					
Pieter van Rooyen	1	2	3	4	5
Manie Maré	1	2	3	4	5
Ronnie Mckenzie	1	2	3	4	5
Quality of information	1	2	3	4	5
Usefulness	1	2	3	4	5
Meeting your needs	1	2	3	4	5
Overall quality of the workshop	1	2	3	4	5

1	Λ		1		ſ		1
lime c	IN Eco	NOMIC	CONSID	ERATION	is / Sogi	s- econon	nic)
	TIME C	TIME ON Eco	TIME ON ECONOMIC	TIME ON ECONOMIC (ONSID	TIME ON ECONOMIC CONSIDERATION	TIME ON ECONOMIC CONSIDERATIONS SOGI	TIME ON ECONOMIC CONSIDERATIONS SOGO- ECONOM

A Miya Group Company

> Thank you for your feedback

qtz

issioned hy:

Delegated Cooperation with:

UKaid

Federal Ministry for Economic Cooperation and Development

Training on Water Resources Yield Model -Orange For Decision Makers

> 29 - 30 November 2010 Pretoria

Feedback Form

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

Name (optional): _

Course:	WATER	RESOURCES	YIELD	MODEL - ORANGE	FOR
	DECISIO	N MAKER	ß		
Deter	301				

```
Date: ________
```

Rate the following on a scale of 1 (poor) to 5 (excellent):

Venue	1	2	3	4	5
Food Quality	1	2	3	4	5
Event speakers					
Pieter van Rooyen	1	2	3	4	5
Manie Maré	1	2	3	4	5
Ronnie Mckenzie	1	2	3	4	5
Quality of information	1	2	3	4	(5)
Usefulness	1	2	3	4	(5)
Meeting your needs	1	2	3	(4)	5
Overall quality of the workshop	1	2	3	Ð	5

Any comments or suggestions:

Thank you for your feedback

Commissioned by:

JKaid

Cooperation with:

QTZ

ederal Ministry or Economic Cooperation nd Development

14

ian Govern

Support to Phase 2 of the ORASECOM Basin-wide Integrated Water Resources Management Plan

Training on Water Resources Yield Model -Orange For Decision Makers

> 29 - 30 November 2010 Pretoria

Feedback Form

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

Name (optional): _____(

Amszy

Course:_

Date: 29-30 NOVent

Rate the following on a scale of 1 (poor) to 5 (excellent):

Venue	1	2	3	X	5
Food Quality	1	2	3	×	5
Event speakers					
Pieter van Rooyen	1	2	3	X	5
Manie Maré	1	2	3	A	5
Ronnie Mckenzie	1	2	3	×	5
Quality of information	1	2	3	4	X
Usefulness	1	2	3	4	X
Meeting your needs	1	2	3	4	X
Overall quality of the workshop	1	2	3	4	X
					/

Any comments or suggestions:

0

Thank you for your feedback

A Miya Group Company

Support to Phase 2 of the ORASECOM Basin-wide Integrated Water Resources Management Plan

Training on Water Resources Yield Model -Orange For Decision Makers

> 29 - 30 November 2010 Pretoria

Feedback Form

Thank you for attending the workshop. Your feedback is important to us and will assist in the planning of future events. Please take the time to complete this form.

Name (optional): Lenka Thamae

Course: WR Yield Model for Decision Maker Date: 2010/11/30

Rate the following on a scale of 1 (poor) to 5 (excellent):

Venue	1	2	3	4	3
Food Quality Brace on one of the days.	1	2	3	4	5
Event speakers					
Pieter van Rooyen	1	2	3	4	5
Manie Maré	1	2	3	4	5
Ronnie Mckenzie	1	2	3	4	G
Quality of information	1	2	3	4	(5)
Usefulness	1	2	3	4	5
Meeting your needs	1	2	3	4	5
Overall quality of the workshop	1	2	3	4	5

Any comments or suggestions:

Thank you for your feedback

APPENDIX B2:

Course Presentations

Objectives (1 of 2)

Overview of:

- Study area and related sub-system
- Improvements by ORASECOM Study
- Description of operating rules IOVS
- Water resource assessment
- Water resource allocation
- Management of water resource systems
- Intervention planning

Objectives (2 of 2)

Achieved by means of:

- Conceptual presentations
- Demonstrations
- Group discussions

10:00 Welcome and introduction Module 1: Introduction to IOVS 10:45 1. Description of study area & related sub-systems 11:45 2. Improvement s by ORASECOM Study 12:00 3. Description of Operating Rules 13:00 4 Group discussion 13:15 > Lunch break Module 2: Overview of water resource management 14:00 1. Overview of water resource management Module 3: Water resource assessment 14:30 1. Modelling water resource systems 14:55 2. Basic modelling principles 15:20 > Tea break 3. Definition of Terms 15:35 15:50 4. Stochastic Yield Analysis 16:20 5. Group discussion 16:35 > Close DWAF (May 2006

DWAF (May 2006)
	Module 4:
08:45	1. Water user criteria
08:55	2. Short-term yield reliability
09:35	3. Curtailing water users
10:05	> Tea break
10:20	4. Assessing availability for licensing
10:40	5. Group discussion
	Module 5: Management of water resource systems
10:55	1. Defining system operating rules
11:40	2. Practical considerations
12:10	3. Group discussion
12:25	> Lunch break
	Module 6: Intervention planning
13:10	1. Introduction
13:25	2. Water requirement scenarios
13:45	3. Undertaking detailed phasing analyses
14:15	> Tea break
14:30	4. Reconciliation Strategies
15:15	5. Group discussion
15:30	Close
	DWAF (May 200

Presenters	
Ronnie McKenzie (WRP)	
Manie Maré (WRP)	
Pieter van Rooyen (WRP)	
	DW AF (May 2006)

2. Using "penalties" to define operating rules

1. Background

Penalties

- Tool for implementing selected operating rules in model
- Dimensionless value assigned by analyst to system components:
 - Channels: for every unit of flow
 - Reservoirs: for every unit of water in storage
- Interpreted by comparing relative size
- Basis of model flow-routing solution

Water resource system

Modelling reservoir penalties

- Defined in terms of "storage zones" and "rule curve level"
- For each zone, 2 data values defined:
 - Elevation of lower zone boundary
 - Zone penalty
- Penalty relation to rule curve:
 - Above: "dis-benefit" of water in storage
 - Below: "benefit" of water in storage

Catchment	Dam Name	Gross	Natural MAR (&)	FSC (\$)	FSC as % of Total
		Area (km²)	(million m ³ /a)	(million m ³)	System Storage
Komati	Nooitgedacht	1 588	66	78	0.7
	Vygeboom	3 132	194	83	0.8
	Morgenstond	548	56	101	0.9
Usutu	Westoe	533	44	61	0.5
	Jericho	219	24	60	0.5
Assegaai	Heyshope	1 120	129	453	4.1
Buffalo	Zaaihoek	622	100	185	1.7
Thukela	Woodstock	1 171	433	373	3.4
	Grootdraai	7 995	458	350	3.2
Vaal	Sterkfontein	195	18	2 617	23.6
vaai	Vaal	38 638	1 977	2 610	23.5
	Bloemhof	108 125	3 315	1 240	11.2
Senau	Katse	1 867	552	1 950	17.6
	Mohale	938	305	947	8.5
1	otal :			11 109	100.0

Orange River System

Orange River System sub-divided into 3 main sub-systems and several small subsystems:

- 1 Lesotho Highlands (Katse & Mohale)
- 2 Caledon Modder (Welbedacht,
- Knellpoort, Rustfontein, Mockes & Groothoek dams)
- 3 Orange River Project (Gariep & Vanderkloof dams)

Orange River Project (3 of 4)

Main Rural/Urban demands Lower Orange Karos-Geelkoppen Rural WS Scheme Kalahari-West Rural WS Scheme Pelladrift WS Scheme

Springbok Regional WS Scheme

• Urban, Industrial & Mining – Prieska, Upington, Alexander Bay, Oranjemund, Rosh Pinah, Noord Oewer, etc.

Upington Area Flood Irrigation and Centre Pivot irrigation

Improvements (2 of 4)

- Re-calibration of hydrology Caledon, Upper Orange, Fish River Namibia Adding hydrology for following subcatchments:
- Inclusion of Lesotho Lowlands Identified Schemes – Hlotse, Hololo, Makhaleng & Metolong Dam
- Updated hydrology for Usutu & Komati subsystems – Obtained from two separate studies

Improvements (3 of 4)

Molopo sub-system details:

- RSA Lotlamoreng, Modimolo & Disaneng dams also Kuruman, Molopo eye & others
- Namibia Otjivero, Daan Viljoen, Tilda
 Viljoen, Nauaspoort & Oanob dams
- Ongers sub-system Smartt Syndicate Dam Sak Hartbees sub-system – Rooiberg,
- Modderpoort & Vanwyksvlei dams
- Lower Orange Namibia Dreihuk

Improvements (4 of 4)

Demand & demand projections:
Latest from Annual operating analysis IVRS & Orange System
Towns – All town study projections
Updated irrigation data from ORASECOM Irrigation task

LHWP Operating Rules

Releases to RSA based on agreed schedule phased in over time. Reached the maximum transfer volume 2009 – 780 mcm/a No releases to support downstream dams

IFR releases from Mohale and Katse

Caledon Modder Operating Principals (1 of 2)

Maintain Assurance of Supply

Primary objective of the operation of CMS is to maintain the assurance of supply to users

Restriction of Demands

 The operation of the CMS is based on the principle that demands are restricted during severe drought

Restriction of Demands

Objective is to reduce supply to less essential use to protect the assurance of supply for more essential use

The basis on which restrictions are implemented is defined by means of a user priority classification definition

Priority Classification Caledon Modder Sub-system

	% of the water demand to be supplied		
Category	1: 200 year	1: 100 year	1:20 year
	(99.5%)	(99%)	(95%)
Irrigation	10	40	50
Urban	50	30	20
Losses	100	0	0
Environmental	68	0	32
X		and the second s	

Caledon Modder operating rule

Bloemfontein is supplied with water from it's resources in the following order (continue):

- 6 Knellpoort below 60% start pumping from Tienfontein
- 7 When not sufficient water in Caledon start to use 40% in Rustfontein
- 8 Remaining 80% in Mockes
- 9 Remaining 60% in Knellpoort

ORP Operating Principals (1 of 2)

Maintain Assurance of Supply

Primary objective of the operation of ORP is to maintain the assurance of supply to users

Hydro Power Operating Rules

Secondary objective is to implement rules that will maximize the hydro-power benefit without jeopardizing the assurance of supply to the users.

ORP Operating Principals (2 of 2)

Restriction of Demands

- The operation of the Orange River Project (Gariep and Vanderkloof dams) is based on the principle that demands are restricted during severe drought
 - Objective is to reduce supply to less essential use to protect the assurance of supply for more essential use
 - The basis on which restrictions are implemented is defined by means of a user priority classification definition

2	Priority Classification
	ORP Sub-system (% basis)

	% of the water demand to be supplied		
Category	1: 200 year	1: 100 year	1:20 year
	(99.5%)	(99%)	(95%)
Irrigation	10	40	50
Urban	50	30	20
Losses	100	0	0
Environmental	68	0	32
ST		~ 2.1	

ORP Operating Rules

Gariep Dam

- Releases through Orange/Fish tunnel based on Operational model
- Releases into the river also used to generate HP
- River releases according to inverse of the downstream demand pattern
- Additional releases if surplus allocated for HP Additional releases for HP if water level above storage control curves

Orange and Vaal System Link

Orange and Vaal River systems are operated separately

The only links are:

- The transfers from the Sengu to the Vaal
- These transfers is fixed and independent of the water supply situation in the Orange d/s of the LHWP or in the IVRS

Spills from the Vaal to the Orange

- Operating rule of IVRS minimizes spills from the Vaal into the Orange. Spills from the Vaal do however enter the Orange during periods of high runoff and as result of operating losses and
- irrigation return flows in the Lower Vaal.

Small Orange sub-systems

- Kalkfontein, Krugersdrift, Tierpoort, Groothoek, Rooipoort, Smartt Syndicate, Naute, Hardap,etc
- These dams use an in-house rule in practice In current WRPM – Supply demand until dam failure occur then supply whatever is available
- Proper scientific operating rules to be developed
- Hardap in Namibia operating rule was developed

Priority Classification Hardap Dam Sub-system (% basis)				
Priority Classification & Assurance of Supply				
User Category	Low 80% 1 in 5 year	Medium 90% 1 in 10 year	High 95% 1 in 20 year	
Urban/industrial	0%	0%	100%	
Irrigation	83%	17%	0%	
Losses	50%	0%	50%%	
X				

Integrated Vaal River System Principals (1 of 2)

General Operating Principle

Must be operated as an integrated system irrespective of who owns or operate each component of the system

Maintain Assurance of Supply

Primary objective of the operation of IVRS is to maintain the assurance of supply to users

Cost Saving Operating Rules

Secondary objective to implement cost saving operating rules during wet hydrological conditions when dams are full.

Integrated Vaal River System Principals (1 of 2)

Restriction of Demands

The operation of the IVRS is based on the principle that demands are restricted during severe drought events.

- Objective is to reduce supply to less essential use to protect the assurance of supply for more essential use.
- The basis on which restrictions are implemented is defined by means of a user priority classification definition.

Priority Classification for IVRS (% basis)				
	Priority clas	sification & assu	rance of supply	
User category	Low	Meduim	High	
	1 in 20 yr	1 in 100 yr	1 in 200 yr	
Irrigation	50	30	20	
Domestic	30	20	50	
Industrial	10	30	60	
Strategic indust	0	0	100	
Losses	0	0	100	
X				

IVRS Operating Rules (1 of 2)

Integrated Vaal River System

Dam Levels

 Trigger levels are used to control the event when transfer should commence or cease to prevent a dam from spilling or to reserve water for use by local users not benefiting from transferred water.

Short term yield capability of sub-systems

Short term yield versus demand - When balance is negative transfer/support will occur if surplus is available from other sub-system. When a balance can not be obtained curtailments will be imposed.

IVRS Operating Rules (1 of 2)
Integrated Vaal River System
• Annual Operating Analysis (WRPM) used as a decision support system to analyze & assess different scenarios of operation to determine the appropriate operating rules for the subsequent 12 months (1 May starting storage levels)
The operating rule involve controlling the transfer of water between reservoirs & sub-systems and the draw down of dams in the system.
Two main trigger mechanisms are used to control transfer volume & timing : dam levels & short term yield capability characteristics

•2011/03/03

Primary objective

Ensuring the supply of water resources to support changing water requirements:

- Over planning horizon
- In sustainable and cost-effective way

Achieved through:

- Assessment
- Intervention planning
- Management
- Monitoring

Assessment

- Resource capability
- Resource assurance
- Water quality
- Water requirements
- User criteria

Management

- Resource operation
 - Reservoirs
 - Supply priorities
 - Transfers
 - Blending / dilution
 - Implementation of Ecological Water Requirements
- Operational cost savings
- System maintenance

Intervention planning

Conservation

- Demand management
- Recycling
- Resource reallocation
- Adjustment of user criteria
- Catchment management

Resource development

- Reservoirs
- Transfer schemes
- Revision of allocations (Licensing)
- Water Quality Management Measures

Monitoring

- System behaviour
- Water requirements
- Impact initiatives / interventions
- Water quality objectives
- EWR supply

Contents

- 1. Modelling water resource systems
- 2. Basic modelling principles
- 3. Definition of terms
- 4. Stochastic yield analysis
- 5. Group discussion

Definition

"... a simplified mathematical description of a system or process, used to assist calculations and predictions..."

– Oxford English Dictionary

DWAF (May 2006

DWAF (May 2006

DWAF (May 2006)

Benefits of modelling

- Allows representation of real world, subject to various human activities / interventions
- Can predict behaviour prior to actual experience
- Provides testing environment to assess best
 options for application in real world
- Allows "mistakes" without applying incorrect or inappropriate options
- Guides design of corrective measures

DWAF (May 2006

DWAF (May 2006

Limitations of modelling

- · Cannot capture full complexities of real world
- Dependent on assumptions
- Data availability
- Selection of appropriate model
- Difficult to standardise modelling approach
- Specialist configuration and interpretation
- Small user group
- Long turn-around time
- Extensive configuration checking

Purpose

- Assessment
 - Resource capability
 - Resource assurance
 - Water quality
- Impact of interventions
 - Conservation
 - Resource development
- Impact of management options
 - Resource operation
 - System maintenance
- Monitoring of observed behaviour

Define objectives
Identify main physical features

The modelling process

- Define system network
- Select system operating rules
- Undertake scenario analysis
- Evaluate results
- Implement decision

DWAF (May 2006

Models and utilities

- Hydrological and water quality data preprocessors (various)
- Data patching utilities (CLASSR, PATCHR)
- Rainfall-runoff models (WRSM2000)
- Stochastic streamflow models (STOMSA)
- Water quality models (WQT)
- Yield analysis models (WRYM)
- Planning analysis models (WRPM)
- Information management systems (WR-IMS)

Other aspects

- Information management systems:
 - Population data
 - Economic data
 - Hydro-meteorological data
- Research improved modelling / management methodologies

DWAF (May 2006

Groundwater modelling

- Groundwater-surface water interaction
- Model developed by K Sami (DWAF, October 2004)
- Currently being incorporated into WRSM2000 rainfall-runoff model and WRYM
- Review in progress

Analysing scenarios (2 of 2)

3. Definition of terms

DWAF (May 2006

DWAF (May 2006

Commonly used terms

- "Firm yield"
- "Secondary yield"
- "Total yield"
- "Historical yield"
- "1:100 year yield"
- "Yield with 95 % assurance"

Yield terms

- Target draft
- Reservoir failure and recovery
- Critical period
- Yield
- Base yield
- Firm yield
- Secondary yield

DWAF (May 2006)

Why bother?				
listorical	yield ar	nalysis at N	lidmar Dam	

Period of analysis (hydrological years)	Number of years	Firm yield (million m³/a)
1930 – 1934	5	81
1930 – 1939	10	69
1930 – 1949	20	69
1930 – 1969	40	69
1930 – 1989	60	36
		DWAF (May 20

Contents

- 1. Water user criteria
- 2. Yield reliability
- 3. Curtailing water users
- 4. Assessing availability for licensing
- 5. Group discussion

Water user criteria Example: Mgeni River system

Description of water requirement components	Percentage	Percentage allocated to indicated priority of			rity class
	of total requirement	1:200 years (0.5 %)	1:100 years (1.0 %)	1:50 years (2.0 %)	1:20 years (5.0 %)
Losses	24.5	100	-	-	-
Wet industry	16.3	70	10	10	10
Dry industry	12.2	70	15	5	10
Domestic	47.0	40	20	20	20
Total	100.0	63	13	12	12
Priority class:		Н	МН	ML	L

Water requirements and user criteria

Water user	Assurance category (RI)	Requirement (million m ³ /a)
Domestic	1:200 years	15
Environmental	1:100 years	10
Industrial	1:50 years	10
Irrigation	1:20 years	15
Total:		50

Interpretation

- How does the base yield line of the imposed target draft compare to the requirement in each assurances category?
- What does the above observation imply?
- How much of the industrial requirement (RI = 1:50) can actually be supplied at RI = 1:100?
 - Show this amount on the figure.

Dependent on:

- Hydrology
- Physical characteristics of system
- Operating rule
- Uncontrolled water requirements
 (e.g. afforestation and diffuse irrigation)
- Note: If any of the above changes, curves must be updated!

Short-term yield reliability

- Represent yield-reliability characteristics
 over short term (up to 5 years)
- Individual set for each defined subsystem

Independent of:

- Controlled water requirements
- Selected priority classification
- Inter-subsystem support definition
- Note: Curves need not be updated for a change in any of the above

Basic principles

- Water users can be curtailed
- Based on allowable risk of non-supply
- Objective to avoid failure (zero storage volume in reservoirs)
- Water users prioritised into classes
 - Balanced allocation within a single class
 - Curtailments in low priority class first, to protect higher classes
- Curtailment is an operating rule and should always be tested and checked

3. Curtailing water users

Curtailment vs. failure Midmar Dam (with curtailments)

2007 Years

2009

2011

2013

2015

0.0

2001

2003

2005

Example:	Allocation	decision
	(2 of 3)	

Curtailed demands (Case 1)

Demand	Million	Distributio into cla	ibution of curtailed demand ato classes (million m³/a)		
	mº/a	Low	Medium	High	
Total allocated	90	9	36	45	
Prop. supplied	75 %	23 %	100 %	100 %	
Allocation to indiv	Allocation to individual users				
Irrigation	30.8	5.8	15	10	
Domestic	59.3	3.3	21	35	

Exam	Example: Allocation decision (1 of 3) Demand distribution						
Demand Million (million m ³ /a)							
	in /a	Low	Medium	High			
Irrigation	50	25	15	10			
Domestic	70	14 21 35					
Total	120	39	39 36 45				

Example: Allocation decision
(3 of 3)

Curtailed demands (Case 2)

Demand	Million	Distribution of curtailed demand into classes (million m³/a)			
	mº/a	Low	Medium	High	
Total allocated	60	0	15	45	
Prop. supplied	50 %	0 %	42 %	100 %	
Allocation to indiv	Allocation to individual users				
Irrigation	16.3	0	6.3	10	
Domestic	43.7	0	8.7	35	

Purpose and methodology

Purpose:

- Apply user priority classification table
 and short-term yield curves
- Undertake allocation calculations

Methodology:

- Midmar Dam sub-system (dam not raised)
- Storage at 80 % of live FSV
- 2002 demands (2001 Planning Analysis)

5. <u>Demonstration 1</u>: Water resource allocation

Input information (1 of 2) Water requirements

User description	User group	Demand (million m³/a)
Pietermaritzburg and Edendale	Dom. and industrial	40.51
Pipes 57, 61 and others	Dom. and industrial	29.34
Albert Falls irrigation	Irrigation	2.95
Midmar compensation releases	Environment	28.40
TOTAL		101.20

Input information ((2 of 2)
Priority classificat	ion

Description of	Percentage allocated to indicated priority class			
user group	1:200 years (0.5 %)	1:100 years (1.0 %)	1:50 years (2.0 %)	1:20 years (5.0 %)
Domestic and industrial	63	13	12	12
Irrigation	5	25	_	70
Environment	50	25	-	25
Priority class:	Н	МН	ML	L

Table to be completed

User	Demand	Demand allocated to indicated priority class (million m ³ /a)							
	(million m ³ /a)	1:200 years (0.5 %)	1:100 years (1.0 %)	1:50 years (2.0 %)	1:20 years (5.0 %)				
Pietermaritzburg and Edendale									
Pipes 57, 61 and others									
Albert Falls irrigation									
Midmar comp. releases									
Total									
Priority class		Н	МН	ML	L				

Completed table

User	Demand	Demand allocated to indicated priority class (million m ³ /a)							
	(million m³/a)	1:200 years (0.5 %)	1:100 years (1.0 %)	1:50 years (2.0 %)	1:20 years (5.0 %)				
Pietermaritzburg and Edendale	40.51	25.52	5.27	4.86	4.86				
Pipes 57, 61 and others	29.34	18.48	3.81	3.52	3.52				
Albert Falls irrigation	2.95	0.15	0.74	-	2.06				
Midmar comp. releases	28.40	14.20	7.10	—	7.10				
Total	101.20	58.35	16.92	8.38	17.54				
Priority class		Н	МН	ML	L				

Method

- Using risk (reliability) as indicator
- Assess multi abstractions
- Apply user reliability criteria

4. Assessing availability for licensing

Assurance of Supply Criteria

	Percent of the water use that must be supplied at the indicated recurrence interval or risk of failure (%)								
Water use sector	1 in 200 years	1 in 100 years	1 in 50 years	1 in 20 years	1 in 4 years				
	0.5%	1%	2%	5%	25%				
Irrigation			50%		50%				
Urban	30%	30%		30%	10%				
Industrial 1 ⁽¹⁾	70%	20%		10%					
Industrial 2	90%	10%							

Compliance Evaluation (2 of 3)

Contents

- **1.** Defining system operating rules
- 2. Practical considerations
- 3. Group discussion

Example 1: Increase Hydro-Power Related Operating rules

DWAF (May 2006

DWAF (May 2006

Background (1 of 2)

Purpose:

To implement rules that will maximize the hydro-power benefit at Gariep & Vanderkloof dams without jeopardizing the assurance of supply to the users.

• Decision criteria:

Should not have negative impact on long-term and short-term reliability of supply

- Example:
 - Orange River system Orange River Project
 - Annual Operating Analyses (2008/09)

DWAF (May 2006)

Background (2 of 2)

- Options investigated:
 - Reduce non-generating spillage at both dams
 - Improve monthly distribution pattern of generated energy
 - Utilise short-term surplus in the system to generate Hydro Power
- Methods implemented:
 - Introduce storage control curves (SCC)
 - Use mirror image of Vanderkloof release pattern and impose on Gariep releases
 - Use annual operating analysis (WRPM) to determine short-term surplus or deficit in system.

DWAF (May 2006)

Energy generated with existing distribution patterns

Energy generated with mirror image of release pattern

Short-term surplus ORP Use Long-term stochastic analysis 1000 sequences of 15 years each constant development level Risk of curtailments for different curtailment levels. Surplus Volume Level 1 Level 2 Level 3 (million m³) (5%) (1%) (0.5%) 140 2.03 0.95 0.19 Scenario 2 (VT9A0A1): Curtailment GAR VDK Use Short-term projection **Curtailment criteria violated** first time by 2014

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Background (1 of 3)

• Purpose:

Test the possibility of deviating from the long-term blending rule for the purpose of improving, over the short-term, the quality of supplied water.

• Decision criteria:

Should not have negative impact on long-term reliability of supply

- Example:
 - Integrated Vaal River system
 - Annual Operating Analyses (2000/01)

Background (3 of 3)

Methodology:

Analyse various scenarios and compare the relative projected TDS concentrations:

- Scenario 1: Long-term rule
 - Rand Water supplied from Vaal Barrage as priority
 - Blend with Vaal Dam water to not exceed 300 mg/l
- Scenario 2: Revised rule
 - First 12 months: 600 mg/l dilution in Vaal Barrage and Rand Water supplied from Vaal Dam only
 - After 12 months revert back to long-term rule

DWAF (May 2006)

Background (2 of 3) System configuration:

Background (1 of 4)

• Purpose:

Test the possibility of deviating from the long-term operating rule for the purpose of reducing operating costs. Note:

- Can only be applied during periods of high system storage
- Decision is based on current system information
- Decision criteria:

Should not have negative impact on long-term reliability of supply

- Example:
 - Integrated Vaal River system
 - Annual Operating Analyses (2000/01)

DWAF (May 2006)

Background (2 of 4)

Background (3 of 4)

• Methodology:

Analyse 2 scenarios and compare the relative projected pumping costs:

- Scenario 1: Long-term rule
 - . Transfer until Grootdraai above 90 % of live FSV
- Scenario 2: Revised rule
 - . From May 2000 for 12 months
 - . Transfer only until Grootdraai above 75 % of live FSV
 - . After 12 months revert back to long-term rule

Background (4 of 4)

- Methodology (cont.):
 - A cost calculation is undertaken as follows:
 - Run 2 scenarios as previously described
 - Undertake 1 000 sequences
 - Multiply unit cost of transfer with transferred volumes, for a single sequence for both scenarios
 - Calculate difference in cost between two scenarios, for that sequence
 - Repeat for both transfer links and add results, for that sequence
 - Repeat for all sequences and derive probability distribution, for both transfer links and for total

DWAF (May 2006)

DWAF (May 2006

Actual projected savings Revised compared with long-term rule (Over 5-year period)

Description of transfer	Saving at indicated exceedance probability (%) ⁽¹⁾ (X R1 million)										
	99.5	99	98	95	75	50	25	5	2	1	0.5
Heyshope to Grootdraai	0.6	0.8	1.0	1.7	4.1	5.4	6.9	10.4	11.5	12.5	13.7
Zaaihoek to Grootdraai	(0.5)	(0.4)	(0.1)	0.1	1.0	1.8	2.6	3.8	4.2	4.5	5.3
Total ⁽²⁾	0.9	1.2	1.8	2.8	5.7	7.3	9.1	13.1	14.7	15.8	17.4
Notes: (1) Values in brackets indicate a cost increase. (2) Not the sum of columns.											

DWAF (May 2006)

Example 1: Monitoring system operation

DWAF (May 2006)

General aspects

- Compare simulated and actual recorded behavior of system variables
- Reservoir trajectories
- Transfer volumes
- Water requirements

Gariep & Vanderkloof Dams

DWAF (May 2006)

Grootdraai/VRESAP transfer to Eskom Power Stations

DWAF (May 2006)

Background

• Purpose:

Identify circumstances in a system warranting the implementation, as well as the lifting of restrictions

- Example:
 - Integrated Vaal River system
 - 1993 to 1995

• <u>Methodology</u>:

Monitor the behaviour of a system by plotting, on the graph of projected system volumes, the actual system volume trajectory

Contents

- 1. Introduction
- 2. Water requirement scenarios
- 3. Undertaking detailed phasing analyses
- 4. Group discussion

General

To determine, over a planning horizon:

- Need for intervention
- Timing of intervention
- Implementation schedules
- Filling times

Within context of:

- Growing water requirements
- User criteria of acceptable risks
- Salinity-related system constraints

DWAF (May 2006

DWAF (May 2006

Aspects of intervention planning

- Augmentation planning
- WC&DM
- Water quality
- Ecological Reserve
- Water Quality Management Measures

Augmentation planning

- Engineering aspects:
 - Design
 - Economics
- Social and environmental impacts of intervention
- Institutional arrangements (central government)
- Financial considerations
- Stakeholder engagement

DWAF (May 2006)

WC&DM

- Engineering
- Institutional responsibilities and
- objectives (local government)
- Political buy-in
- Financing
- Social influence
- Stakeholder engagement
- Tariffs

Water quality

- Water should be fit for use
- Managed by setting Water Quality
 Objectives
- Integrated management essential
- Management Measures
 - Operational blending/dilution
 - Waste Discharge Charge System
 - Treatment (discharge or abstraction)

DWAF (May 2006

2. Water requirement scenarios

General

- Need future projections for twenty year planning period – long lead time of large schemes, 10 to 15 years
- Municipalities usually only provide short term projections
- Therefore DWAF studies determine scenarios
- Have to understand the relationship between water requirements and return flow
- Need to know where in a system the return flows will become available

Drivers of water requirements

DWAF (May 2006

- Population growth and migration demographic assessment
- Economic growth
- Changes in economic activities (industrial vs. service)
- Service level changes
- Water Conservation and Water Demand Management
- Technology (irrigation systems)
- Water tariff
- Legislation and government policies

Example 1: Vaal River system

DWAF (May 2006

DWAF (May 2006)

Population scenarios Population Suported from the Vaal River System (TR134 study area) 25000 (s 20000 15000 10000 Popt 5000 Λ 1950 1960 1970 1980 1990 2000 2010 2020 2030 Years -NWRS Low DWAF (May 2006)

Water requirement scenarios

3. Undertaking detailed phasing analyses

DWAF (May 200

WRPM capabilities

- Variety of physical system features
- Flexible configuration (not hard coded)
- Complex systems, multiple reservoirs
- Multiple users and assurance levels
- Flexible operating rule definitions
- Dynamic changes over time
- Rigorous stochastic flow generation

DWAF (May 2006

Software forward compatible

WRP limitations

- High level of experience
- Effort for configuration and maintenance
- Extensive testing and verification
- Graphical output via post-processors
- No automatic optimisation (scenarios)
- No antecedent flow conditions
- Few specialists for maintenance

Basic components of the WRPM

- Network simulation algorithm
- Stochastic streamflow generator
- Water resource allocation procedure

DWAF (May 2006)

Salinity modelling procedures

WRPM result presentation (2 of 4)

WRPM result presentation (4 of 4)

Main WRPM results (1 of 2)

Projection plots of:

- Monthly / annual reservoir volumes (also with historically observed trajectory)
- Monthly / annual system volumes
- Annual total demand vs. supply
- Annual curtailment levels

Monthly reservoir volumes Example: Midmar Dam

DWAF (May 200

Main WRPM results (2 of 2)

- **Projection plots of:**
- Monthly / annual avg. channel flows
- Monthly / annual avg. TDS concentrations (channels and reservoirs)
- Hydropower:
 - Energy
 - Power

Monthly reservoir volumes Interpretation

- Volume at full supply level:
 - Current = ± 175 mill m³
 - Lowered = \pm 140 mill m³
 - Raised = ± 235 mill m³
- Vol. at dead storage level = ± 31 mill m³
- Starting storage vol. = ± 175 mill m³
- Lowest draw-down vol. = ± 40 mill m³
- What is the minimum live storage at the 99.5 % exceedance probability?

DWAF (May 2006

DWAF (May 2006

		Scenario	S	
No.	Water Requirements and Return Flows	Mine water Management	Unlawful Water Use	LHWP Phase 2
1	High without further WC/WDM	Neutralisation and discharge into Vaal	Not reduced	Delivery 2020
2	High with target WC/WDM	Neutralisation and discharge into Vaal	Removed by 2013	Delivery 2020
3	High with target WC/WDM	Desalination and used	Removed by 2013	Not implemented
4	High with target WC/WDM	Desalination for urban use	Removed by 2013	Delivery 2020

Results – IDS Concentrations						
	Scenario		DWOO			
Point	1	4	RWQO			
Klip	1022	596	600			
Suikerbosrand	1084	651	650			
Barrage	730	569	600			
Midvaal offtake	636	622	600			
Sedibeng offtake	688	648	600			
Bloemhof Dam	775	602	750			
Vaal Harts Weir	800	629	750			

Operating Objectives Key objectives of operating the IVRS is to first use downstream dams before releases are made from upstream dams. This has the following advantages: Maximises the capturing of runoff and reduces spills. Operate Bloemhof and Vaal dams as low as possible to reduce evaporation losses. Basin characteristics and evaporation rate in the upper dams are more favourable to the lower reservoirs. The alternative delivery and transfer operating rules evaluate the implication of the above objectives through risk analysis of the Integrated Vaal River System.

Scenario Assumptions

- Water requirements and return flow scenario used:
 - Conservative high planning scenario which requires more water from the LHWP compared to the "Scenario D" of the LHWP Feasibility Study.

• LHWP Phase II components:

 Based on information from the System Analysis Report of the LHWP Feasibility Study second stage (LHWC, 2008)

Summary

- The risk of water restrictions are significantly higher for the block delivery option compared to the other transfer scenarios presented.
- The block delivery rule results in almost continuous violations of the risk criteria over the analysis period.
- The date to augment after Phase II is significantly delayed for all the delivery scenarios compared to the block delivery option.
- Shared utilisation of LHWP provides flexibility and optimisation in management of Orange River Basin water resources.

4. Group discussion

