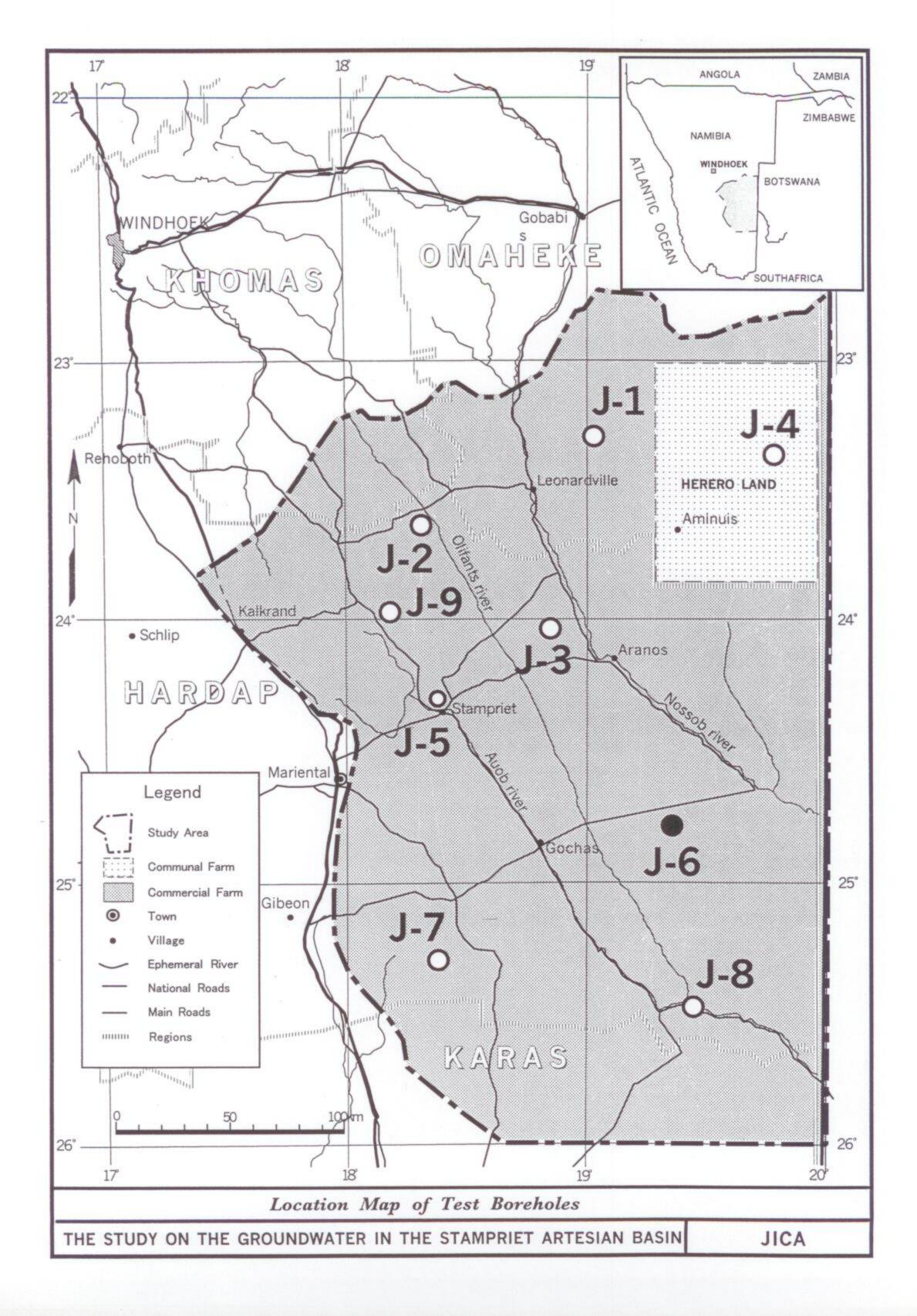
STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN FOR THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN IN THE REPUBLIC OF NAMIBIA


Japan International Cooperation Agency Pacific Consultants International

BOREHOLE FINAL REPORT

Borehole J6-K (WW 39849) Cobra R 349

METZGER PM DRILLING P.O.Box 11733 Windhoek Namibia

Windhoek October 2000

Contents per Chapter

- 1. Geological Borehole log
- 2. Penetration Record
- 3. Mud Rotary Drilling Log
- 4. Geophysical Log and Casing Design
- 5. Borehole Development Data
- 6. Evaluation of Pumping Test
- 7. Water Level Recorder Installation

1. Geological Borehole Log

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

GEOLOGICAL BOREHOLE LOG

(final casing installed),	Collar elev.: 1104 mamsl
Date completed: 28 July 2000	E 19. 33483°
Jica Reference: J - 6 - K	S 24. 80009°
Farm Cobra	WW 39850

Depth below surface (m)	Section (m)	Lithology	Stratigraphy
0 - 4	4	Very coarse grained subsurface sand	
4 - 26	22	Calcareous sandstone with pebbles and granules, light pinkish to white.	
26 - 104	78	Calcareous sandstone, moderate brown, drill cuttings severely ground. Between 47 m and 51 a gravelly horizon was intersected.	
104 - 111	7	Light brown medium to coarse grained sandstone, calcite cemented.	
111 - 121	10	Calcareous sandstone, moderate brown, drill cuttings severely ground.	
121 - 141	20	Calcareous sandstone, medium grained quartz grains. Dispersed quartz granules ϕ 2 mm, sub-angular, purple to dark grey.	KALAHARI
141 - 153	12	As above, with colour change to moderate orange brown.	
153 - 158	5	As above, with intercalated bands of moderate red brown sandstone , medium to coarse grained, with some quartz granules $\phi 2 - 3$ mm displaying FeO staining between 156 and 158 m.	
158 – 168.4 EOH	10.4	Prominent sandstone to 164 m, fining downwards to a shale at 168 m, colour dark yellowish brown.	

Remarks:

1. Drilling method mud-rotary results in severely ground drill-cuttings.

1

This borehole was logged by A. Wierenga and F. Bockmuhl.

2. Penetration Record

pth (m) 1	Pen. Rate (min/m)	Time (hrs:min)	Date (dd/mm/yy) 25/06/00
5			
	4 5.8		
10	4.35		
	4.4		
	5.65		
	6.6		
	6.6		
	6.3 6.55		
	7.1		
	8.25		
	7.95		
20	8.75		
	8.55		
	5.6		
	5.35		
	5.6 5.5		
	6.85		
	8.15		
	9.35		
	7		
30	6.8		
	6.95		
	7 8.3		
	8.1		
	7.55		
	5.3		
	8.65		
	6.35		
	4.55		
40	6.05		
	4.9 8.25		
	9.25		
	9.1		
	9.3		
	9.2		
	9.85		
	9.6		
	9.9		
50	14.3 17.8		
	17.8		
	13.0		
	11.3		

	12.2	
	13.2	
	11.1	
	11.5	
	14.95	
60	16.3	
	14.7	
	16.15	
	15.8	
	12.95	
	12	
	12.1	
	8.9	26/06/00
	9.7	
	11.35	
70	12.85	
	8.75	
	9	
	7.75	
	7.55	
	9	
	9.05	
	8.3	
	9.75	
	8.45	
80	11.15	
	10.7	
	12.1	
	10.85	
	10.55	
	10.3	
	10.85	
	11.5	
	10.6	
	9.4	
90	6.75	
	8.6	
	8.95	
	7.75	
	9.45	
	19.3	
	5.5	
	6.65	
	6.85	
	6.8	
100	6.1	
	5.3	
	4.7	
	6.9	
	9.5	
	9.35	
	11.85	
	8.4	
	9	
	3.4	
110	4	

Page 2

	2.85	
	8.35	
	5.7	
	6.35	
	5.5	
	6.15	
	4.5	
	6.15	
	6.25	
120	6.2	
	6.1	
	5.7	
	6	
	6.4	
	5.35	
	4	
	3.8	
	2.55	
	5.15	
130	6.2	
	5	
	6.5	
	9.2	
	7.7	
	5.75	
	5.9	
	6.65	
	6.3	
140	5.05	
	4.05	
	7.1	
	3.8	
	7.85	
	5.55	
	8.5	
	7.65	
	5	
	6.65	
	7.75	
	11.25	
	10.9	
	6.3	
	8.1	
	13.3 10.2	
	16.75	
	15.6 9.25	
	9.20	
	7.05	
	7.25	
	11.15	
	5.3	
	8.95	
	2.3	
	4	

Page 3

11.55	
7.1	

Penetration Record J 6 K

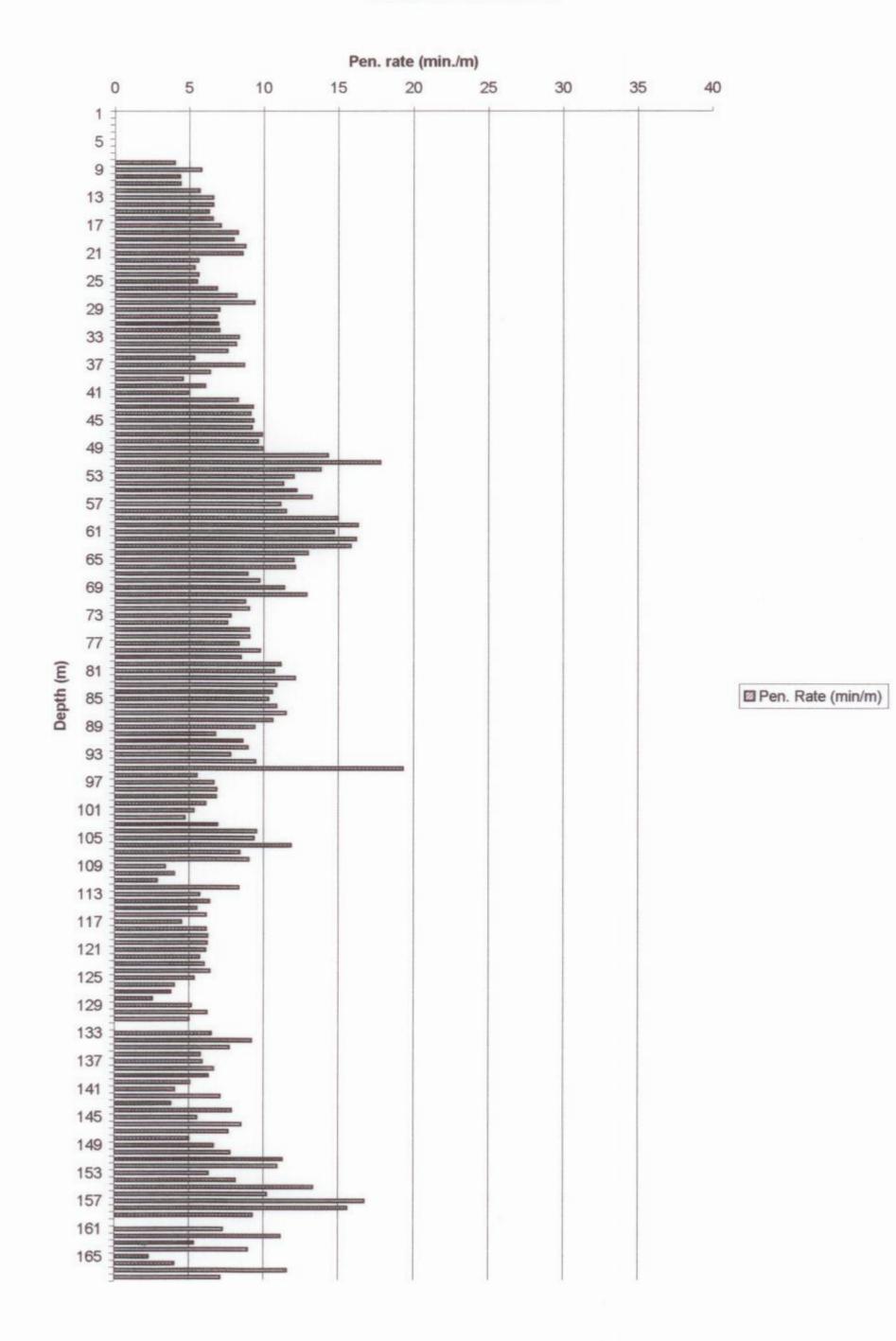


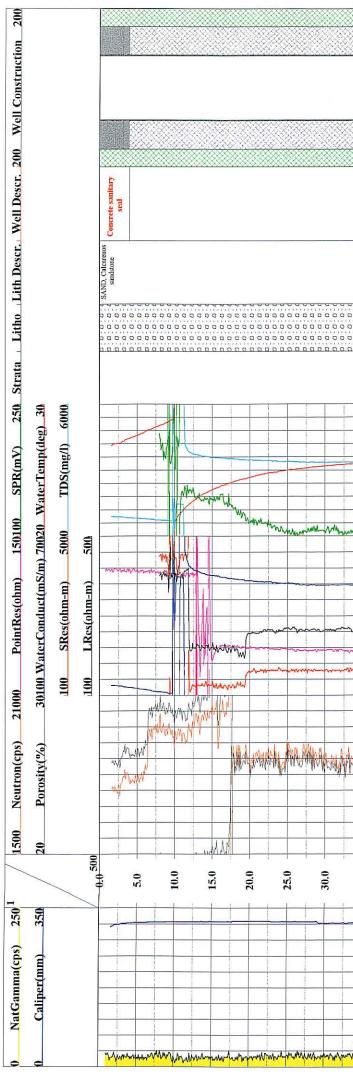
Chart2

3. Mud Rotary Drilling Log

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

MUD ROTARY DRILLING LOG

JICA REFERENCE: J 6 K LOCALITY: Cobra R 349 WW 39849 DATE: 24/6 to 27/6 2000


TIME	DEPTH mbgl	MARSH FUNNEL TEST 1000 ml (sec)	MARSH FUNNEL TEST 500 ml (sec)	E. C. mS/cm	DENSITY	pH	TEMPERATURE ° C	COMMENT
15:30	0	29	16	1.488	1.16 ≥	10	23	Water tanker, used for drilling fluid. Date 24/06/00
10:30	17	39	25	1.444	d.o.	9	17.7	Date 25/06/00
08:00	74	38	25	0.9	d.o.	9	19.7	Date 26/06/00
		28	16	0.99		8	8.0	Water tanker, used for mixing drill fluid.
14:00	110	32	20	2.16		9	31	
11:30	168	33	24	2.45		9	25.3	Date 27/06/00 end of borehole.

4. Geophysical Log and Casing Design

Poseidon Geophysics

	CONSULTANT PACIFIC CONSULTANTS INTERNATIONAL
	COMPANY METZGER PM DRILLING
	PROJECT The Study on the Groundwater Potential Evaluation and Management Plan in the Southeast Kalahari (Stampriet) Artesian Basin
sics	WELL ID J6K WW39851
Poseidon Geophysics J6K_WW 39851 Cobra J 6 J 0. J6K	LOCATION COBRA
CO. Poseidon Geoph WELL.J6K WW 39851 PROJ. LCN. Cobra STE. J 6 FILING No. J6K	COUNTRY REPUBLIC OF NAMIBIA
BH COORDINATES	
COLLAR ELEVATION LOG MEAS. FROM G	roundlevel
DRILLING MEAS. FRO	M Groundlevel
DATE	27 Jule 2000
TYPE LOG	Physical Properties
DEPTH-DRILLER	168.5m
DEPTH-LOGGER BTM LOGGED INTERV	168.3m VAL 168.3m
TOP LOGGED INTERV	
PERMANENT DATUM	Groundlevel
RECORDED BY	Wimpie Coetzer
WITNESSED BY	Frank Bokmuhl
	JAPAN INTERNATIONAL COOPERATION AGENCY

Calvanized steel Boreloole ID Boreloole ID Brilin size grain size	Johnson Screen	Johnson Screen	Johnson Screen	Johnson Screen
	000000000000000000000000000000000000000	000000000000000000000000000000000000000		00000000000000000
	way with the second	wuman	multimethy the hold and a second	mmuning and the
			www.ummundtyw	when when the
				MANA PANA 31
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	110.0	115.0	135.0	155.0 1
A Manana and a share a			an ruma what have been a second	

5. Borehole Development Data

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

BOREHOLE DEVELOPMENT DATA

JICA REFERENCE: J 6 K LOCALITY: Cobra R 349 WW 39849 DATE: 29/06/2000 (starting)

1	Water Level (mbsu)	E.C. (mS/m)	Yield (m ³ /h)	¹ / ₂ 90° V- Notch (mm)	P.I.D. (mbsu)	TIME (actual)
Date 29/06/00. Cable all the screens in orde Add gravel as fines are	27,70					11:00
Stop						23:00
Date 30/06/00. Baili Bai	42.75	241				08:00
Remove 43 bailers			0.268			12:00
Two hours of						14:00
Bailing: remove 10	103.50	237	1.08			16:20
3 hours of continu						19:30
Date 2/	116.4			45	163	11:00
	116.41			40		12:00
	114.10			43		13:00
	114.15			35		14:00
	113.10			30		15:00
	113.00			45		16:00
	113.98			30		17:00
	112.40			30		18:00
Airlift t	112.45			29		19:00

]	Water Level (mbsu)	E.C. (mS/m)	Yield (m ³ /h)	½ 90° V- Notch (mm)	P.I.D. (mbsu)	TIME (actual)
D	113.14			34	163	07:45
pH 9.39; T 22		>>>				08:15
					151.3	09:10
	112.20		0.7	38		10:00
	112.27		0.7	38		11:00
Re	113.76					12:00
5					124.50	13:20
	104.70	2040	0.144	20		17:10
	105.20	2170	0.144	20		17:50
Stop airlifting: wat	105.30	2180	0.144	20	124.5	18:10
Date 04/07/200	103.28					08:15

Remarks:

This borehole was also developed by means of electrical submersible pump. Data from the development conducted on 22/07/2000 is tabulated below:

R	E.C. (mS/m)	Yield (m ³ /h)	Water Level (mbsu)	Pump time (min)	TIME (actual)
Rest		0	102.31	0	13:30
			105.55	1	
			107.54	2	
			108.64	3	
			109.52	4	
			110.18	5	

Remarks					
Date 3/7/00.					
2.4°C. Water very saline.					
emove pipes					
Start again					
T 23.3°C					
ter clear and free of sediment					
00: Measure water level.					

Remarks					
t water level					

R	E.C. (mS/m)	Yield (m ³ /h)	Water Level (mbsu)	Pump time (min)	TIME (actual)
			110.95	6	
			111.49	7	
			112.15	8	
			112.79	9	
			113.32	10	
			113.65	12	
		1.656	113.70	14	
Change cable p			113.78	16	13.46
Tap		10.19	116.00	17	13.53
			122.03	18	
			128.59	19	
			132.00	20	
			138.40	21	
Clo			141.80	22	
		7.48	141.50	23	
			143.10	24	
Clo			144.15	25	
		5.9	144.25	26	
		5.7	144.21	28	
			144.48	30	
Clo			144.29	32	
		5.0	143.17	34	
			142.35	36	
		4.996	141.75	39	
			141.32	42	
		5.052	141.18	46	
			141.08	51	

Remarks					
phases. Short recovery.					
p full open					
ose the tap					
ose the tap					
ose the up					
ose the tap					

R	E.C. (mS/m)	Yield (m ³ /h)	Water Level (mbsu)	Pump time (min)	TIME (actual)
		5.142	140.96	56	
			140.87	61	
		5.157	140.84	66	
			140.77	71	
		5.088	140.76	76	
			140.77	86	
		5.120	140.75	96	
			140.73	106	
		5.106	140.72	116	
			140.72	126	
		5.117	140.68	136	
			140.67	146	
		5.179	140.68	156	
			140.65	166	
		5.095	140.64	176	
			140.65	186	
pH 9.1	2350	5.168	140.66	196	
			140.66	206	
		5.110	140.61	216	
			140.53	226	
		5.142	140.51	236	
		5.088	140.46	246	
End of		5.110	140.45	256	17:53

Remarks					
15; T 27.7°C					
15, 1 27.7 C					
f development					
	ſ				

6. Evaluation of Pumping Test

1. PUMPING TEST ANALYSIS

J6-K (WW39849) - Pumping well

J6-A (WW39850) - Observation well

J6-N (WW39851) - Observation well

1.1. Well Efficiency (Step Drawdown Test) (Annex 1)

Well Efficiency was analysed by making use of the Jacob method for draw down data. Aquifer parameters used for the calculation of well efficiency were obtained from the evaluation results of the constant discharge test, which is discussed in **Section 1.2** below.

The well efficiencies at the range of pumping rates used during the step drawdown test are summarised in Table 1 below.

Borehole number	Step	Abstraction Rate [m ³ /h]	Draw Down* [m]	Borehole Efficiency [%]
_	1	1.0	6.24	59.1
	2	2.1	12.40	56.7
J6-K	3	3.0	19.30	54.9
	4	4.0	26.50	53.0
	5	5.1	35.80	51.1

Table 1: J6-K: Borehole efficiency at various pumping rates

* at cut-off time t, after which well bore storage has no affect on the well performance

Data on the linear and non-linear well losses and skin factors as well as the efficient well radius are presented in Annex 1.

1.2. Constant Discharge Test Analysis (Annex 2 - 5)

The abstraction rate of the constant discharge test was 3 m³/h. The constant discharge draw down curve of abstraction borehole **J6-K** indicates leaky conditions. For leaky aquifers, the Walton / Hantush I analysis method with draw down and recovery data was used to calculate the hydraulic conductivity of the aquifer and the aquitard as well as the leakage factor B **(Annex 2 & 3)**. Using the normal Theis or Cooper-Jacob analysis will result in the over estimation of the hydraulic conductivity of the leaky aquifer and an under estimation of the hydraulic conductivity of the aquitard. (Kruseman, De Ridder, 1992).

The aquifer storativity had to be estimated due to the fact that the observation boreholes J6-A and J6-N do not penetrate the same aquifer as J6-K. During the duration of the constant discharge test, a rise in the water level of observation borehole J6-N is observed, while the water level of J6-A was stable over the period of testing. (See Annex 5).

The occurrence of leakage could be due to water derived from storage within the aquitard. The sandstone within the Rietmond Formation is confined and under higher hydraulic pressure and will also contribute to leakage occurring into the upper Kalahari aquifer. The results of the constant discharge analysis are summarised in **Table 2** below.

1

Borehole number	Analysis	т	S	k	S	Simulation	Comments
	number	method	[m²/day]	[m]	[cm/sec]	[-]	model
J6-K	Walton / Hantush I - draw down	6,23	50	1,4 x 10 ⁻⁴	*1 x 10 ⁻⁵	Walton / Hantush I	*Storativity estimated - Observation
	Walton / Hantush I- recovery	6.35	50	1,5 x 10 ⁻⁴	*1 x 10 ⁻⁵		boreholes are not located in the tested aquifer

Table 2: Aquifer Parameters calculated for J6-K; Kalahari

The Walton / Hantush I model for leaky condition from aquitard storage was used to simulate and verify the actual data and analysis approach of the constant discharge test. Simulation parameters summarised in **Table 2** were used in simulation of the actual pumping test data (See **Annex 4** for simulation results).

The radius of influence (R) was estimated after SICHARDT (1928) using the equation:

 $R = 3000 \times s \times K_f^{1/2}$

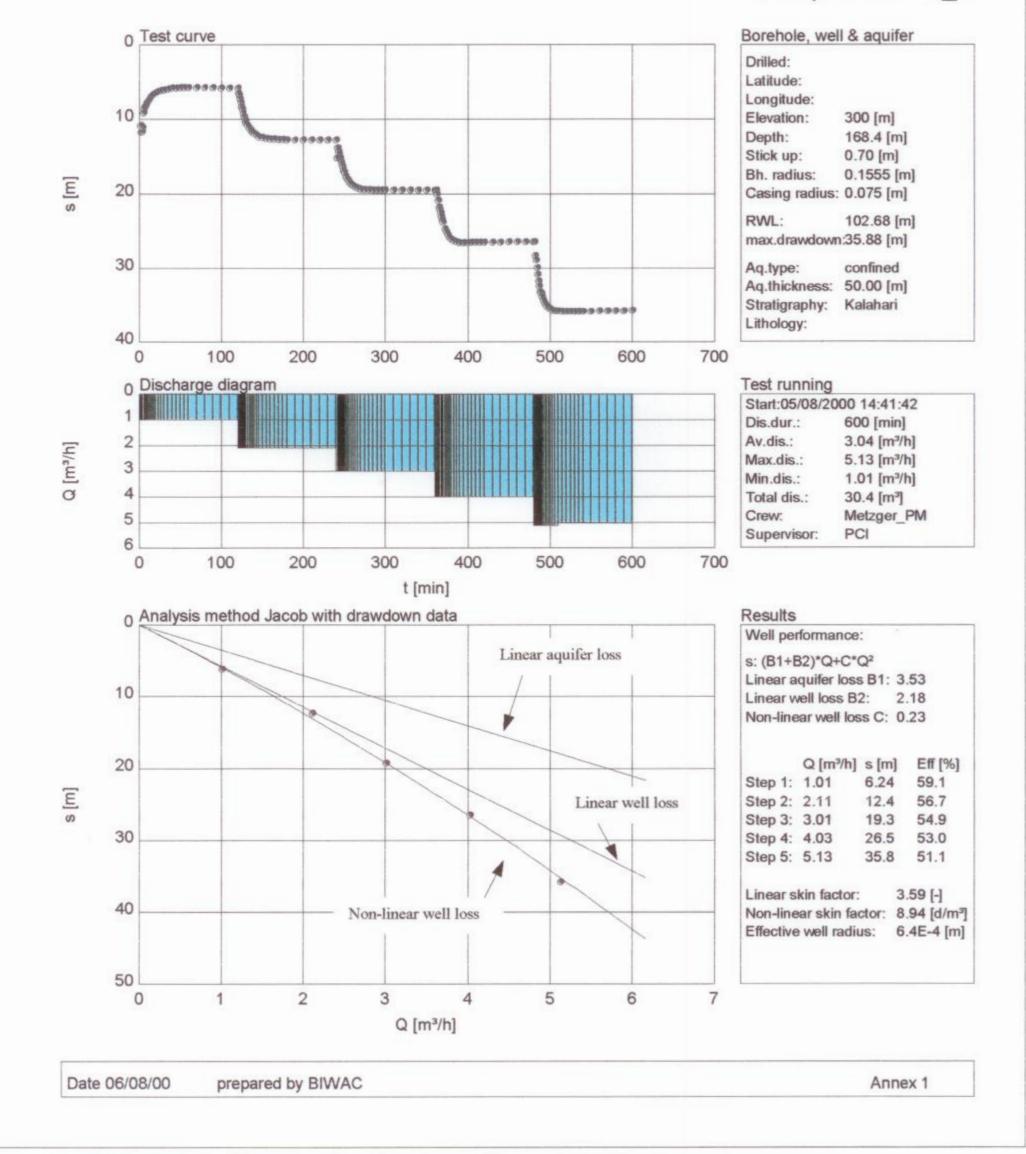
 $R = 3000 \times 20.7 \times 1.21 \times 10^{-3} = 75 \text{ m}$

where

R = Radius of influence

s = Draw down in abstraction borehole at end of pumping

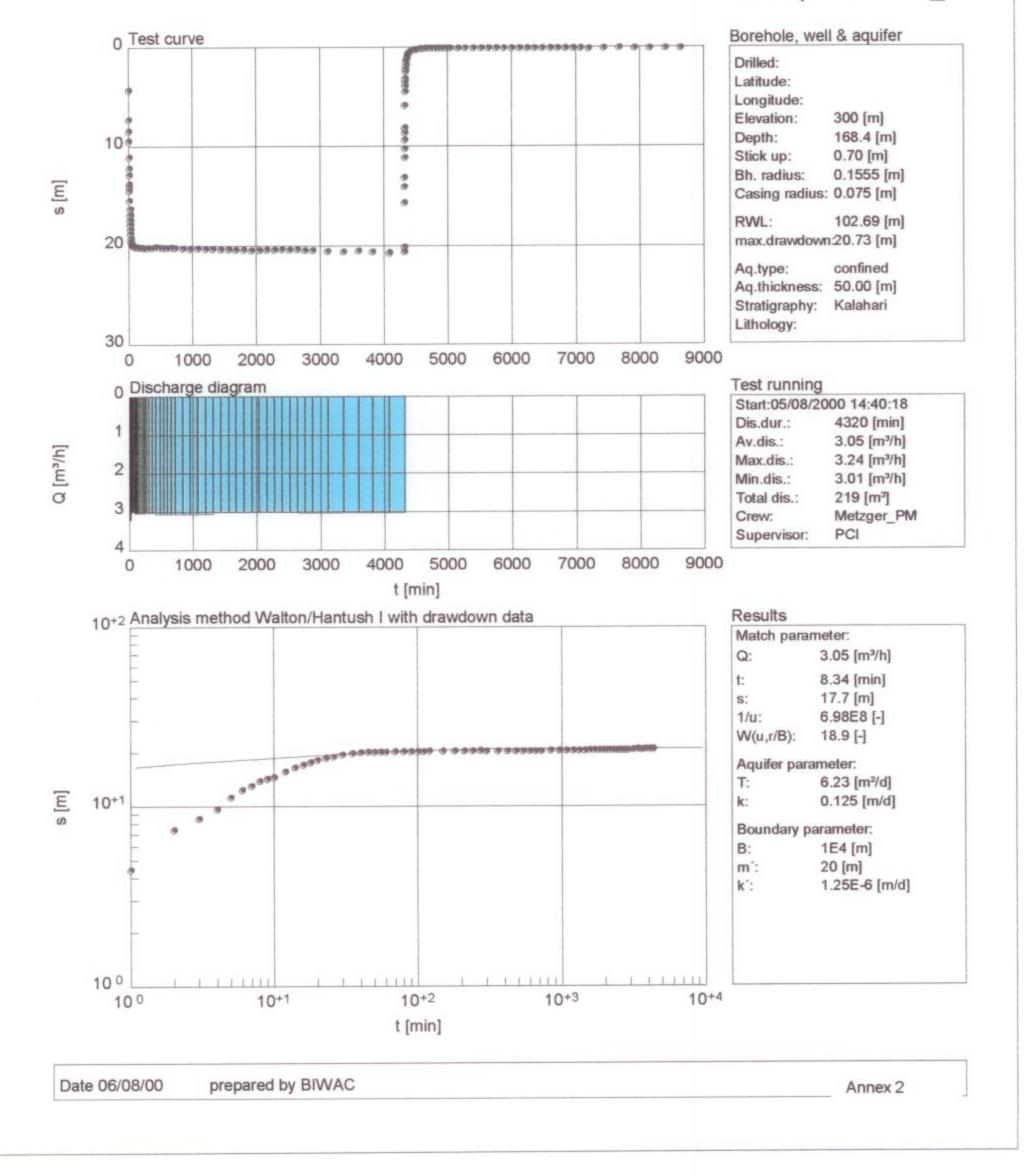
K_f = Permeability of the aquifer


The equation is approximately correct for unconfined aquifers. In case of a confined aquifer the radius of influence most probably larger and the 75 m are considered to be the minimum value.

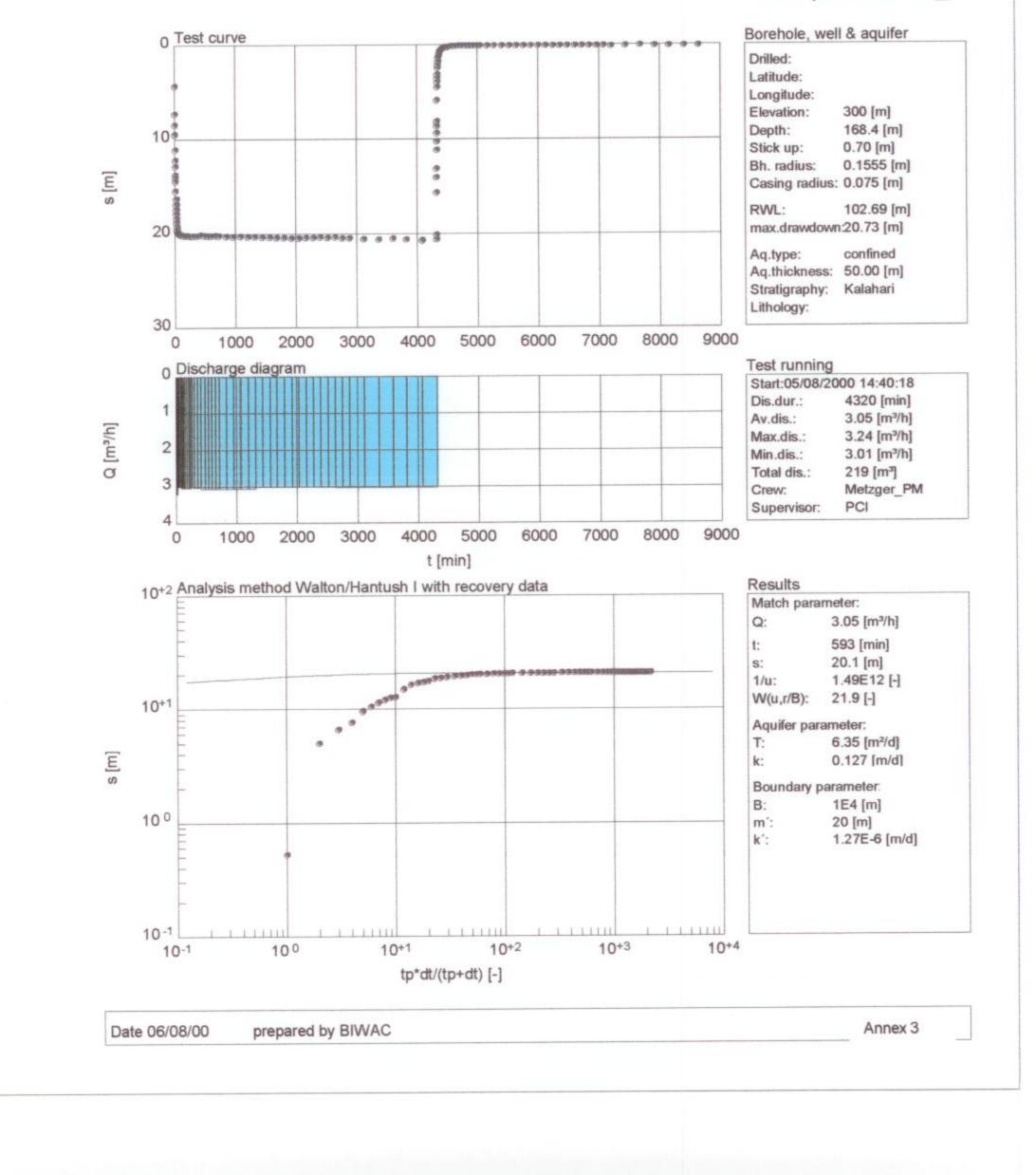
A proper evaluation of R (and storativity S) will only be possible once reliable data from observation wells, penetrating the same aquifer as the pumped well, are available.

Evaluation of Test Pumping Data

Step test analysis

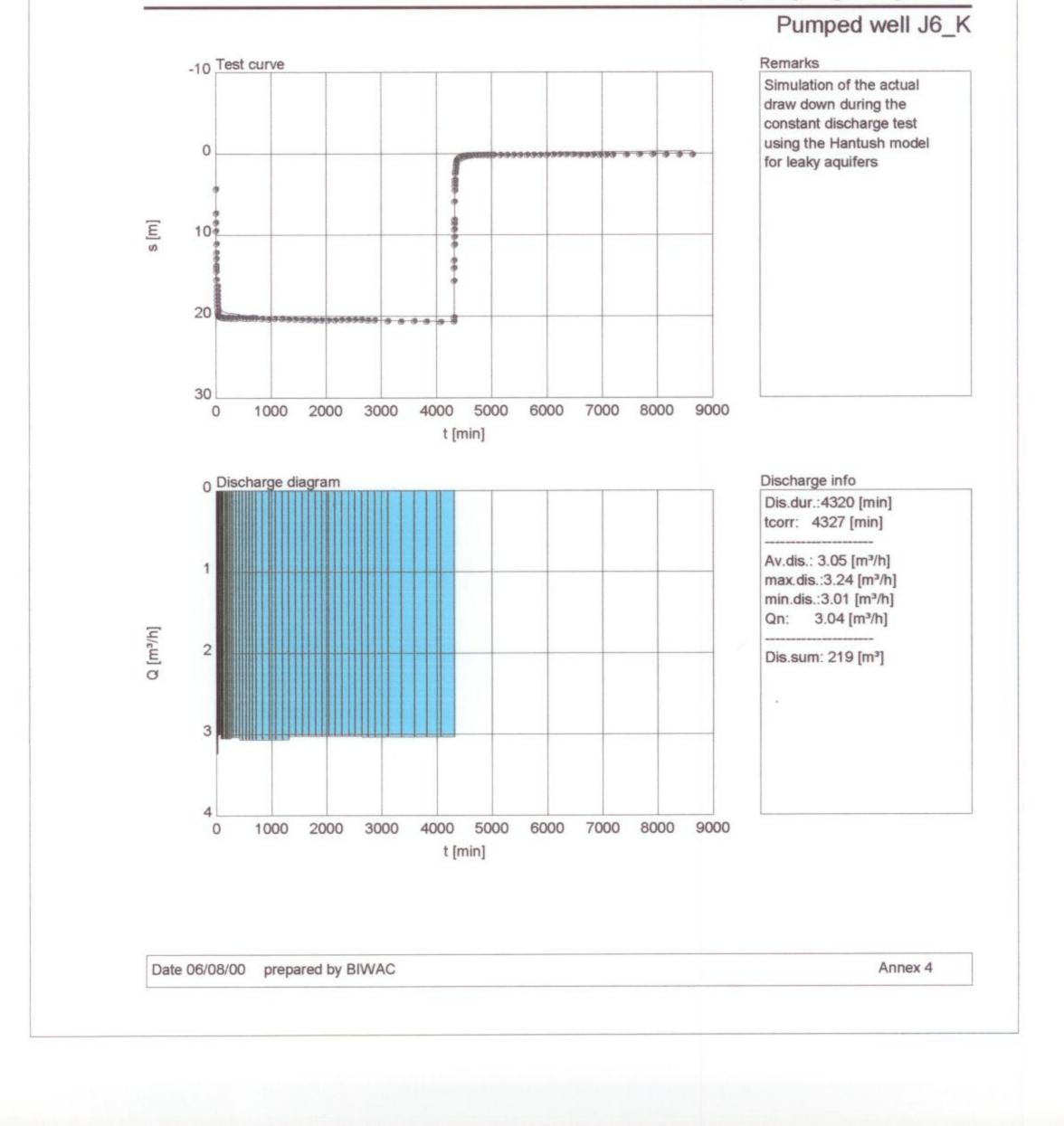


Evaluation of Test Pumping Data

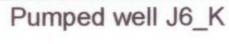

Test pumping analysis

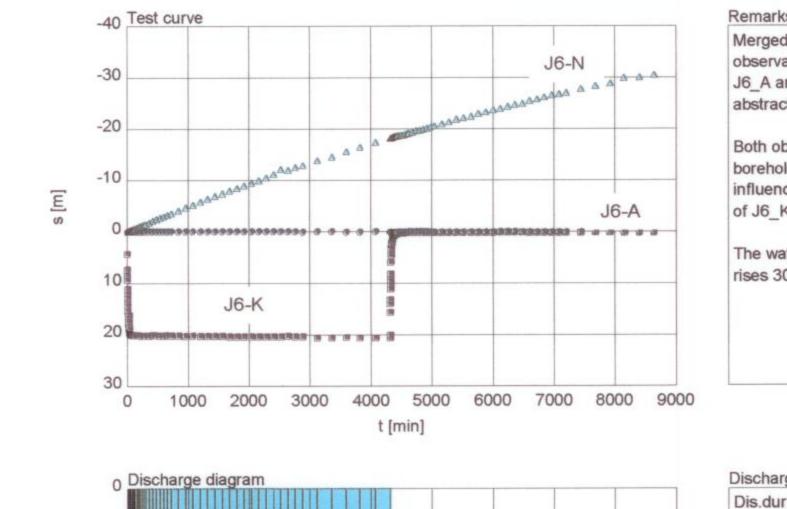
Pumped well J6_K

Evaluation of Test Pumping Data


Test pumping analysis

Pumped well J6_K


Evaluation of Test Pumping Data

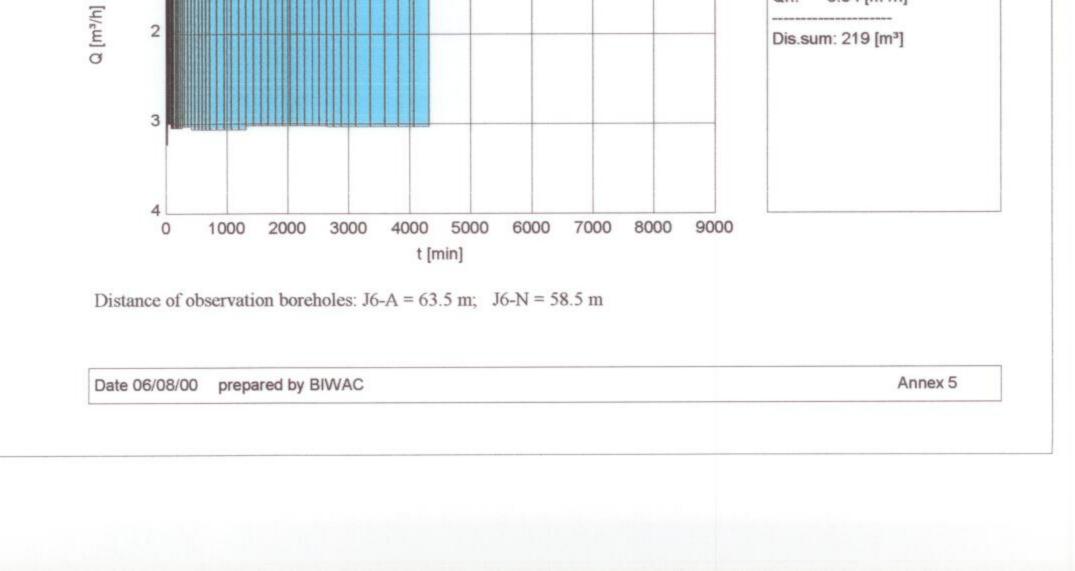

Test pumping diagnosis

Evaluation of Test Pumping Data

Test pumping diagnosis

1

2


Remarks

Merged data from observation boreholes J6_A and J6_N and abstraction borehole J6_K

Both observation boreholes are not influenced by the pumping of J6_K

The water level of J6_N rises 30 m during the test

Discharge info Dis.dur.:4320 [min] tcorr: 4327 [min] Av.dis.: 3.05 [m3/h] max.dis.:3.24 [m3/h] min.dis.:3.01 [m3/h] 3.04 [m³/h] Qn: Dis.sum: 219 [m3]

7. Water Level Recorder Installation

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

INSTALLATION OF SEBA FLOATERS

JICA REFERENCE: J 6 K LOCALITY: Cobra R 349

WW 39849

1.	Serial Number of floater:	4540
2.	Date installed:	20/09/00
3.	Rest Water Level when installed:	103.50 mbsu
4.	Distance from stick-up to logger:	99.0 m
5.	Distance from logger to water level:	4.50 m
6.	Cut off:	99.0 m (0.91 + 98.11)

