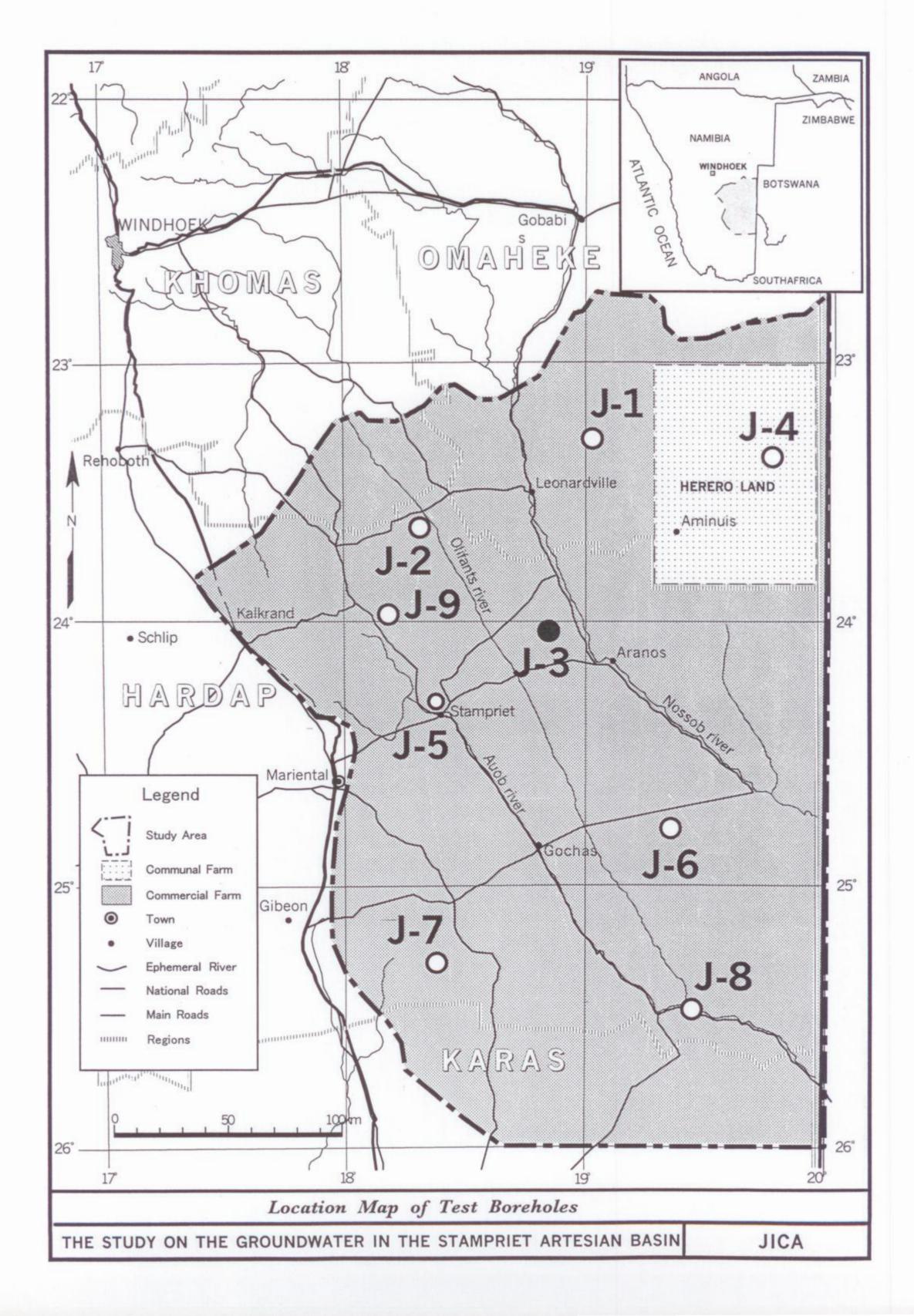
STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN FOR THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN IN THE REPUBLIC OF NAMIBIA

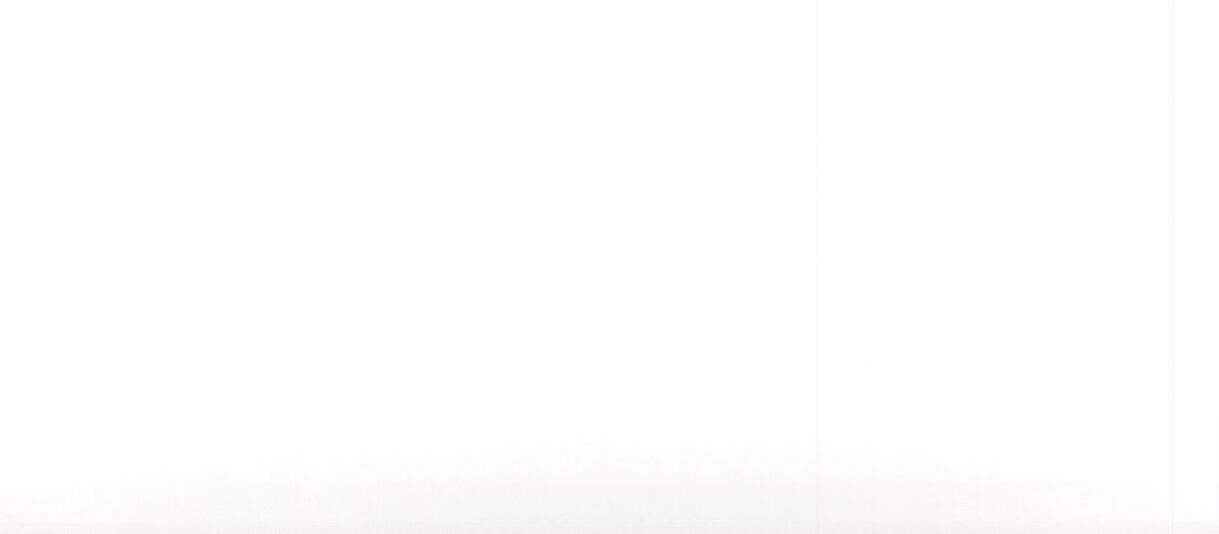
Japan International Cooperation Agency Pacific Consultants International

BOREHOLE FINAL REPORT


Borehole J3-N (WW 39844) Choroaoheib R 300

METZGER PM DRILLING

P.O.Box 11733 Windhoek Namibia


Windhoek

October 2000

Contents per Chapter

- 1. Geological Borehole log
- 2. Penetration Record
- 3. Mud Rotary Drilling Log
- 4. Geophysical Log and Casing Design
- 5. Borehole Development Data
- 6. Evaluation of Pumping Test
- 7. Water Level Recorder Installation

1. Geological Borehole Log

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

Farm Choroaoheib R 300 (Ptn Steynsrus)	WW 39844
Jica Reference: J - 3 - N	S 24, 04858°
Date completed: 3/6/2000	E 18, 79614°
	Colley alow + 1205 m

GEOLOGICAL BOREHOLE LOG

Depth below surface (m)	Section (m)	Lithology	Stratigraphy
0 - 6	6	Karsted, light reddish brown sandy calcrete . Shallow cover of reddish brown medium to coarse sand. Karst cavities filled with dark reddish brown sand.	
6 - 7	1	Unsorted, mostly rounded to sub-rounded quartz sand, slightly calcareous.	
7-9	2	Gravel bed : coarsening downwards from slightly calcareous coarse grained sand to a partially calcretized unsorted gravel with pebbles up to 8 mm \emptyset . Colour brownish grey.	
9 - 11	2	Unsorted gravel, non-calcareous and not consolidated. Grains sub-rounded to rounded, Ø up to 5 mm, light brown.	
11 - 14	3	Conglomerate: Mostly rounded quartz pebbles (- 10 mm) in a calcareous sandstone matrix. Light greyish brown.	
14 - 15	1	Light greyish brown coarse grained sandstone, calcareous.	KALAHAR
15 - 25	10	Poorly consolidated quartz gravel. With increasing depth gravel is progressively more cemented by white calcrete.	
25 - 31	6	Coarse gravel, quartz, rounded, in a orange clayey matrix. Colour changes to pale brown at 31 m.	
31 - 42	11	Pinkish white massive calcrete . At 33 - 35 m calcretized reworked calcrete.	
42 - 50	8	Calcretized quartz pebbles to small boulders. (= conglomerate) Samples highly ground by drilling action. Representative fraction esp. collected at 47 m. Pebbles well rounded.	
50 - 55	5	Pale orange brown fine to very fine-grained sandstone, calcareous at 51 m. Occasional scattered grains in sandstone very coarse.	
55 - 58	3	Pale yellowish brown intercalations of soft shale with calcareous fine-grained sandstone.	
58 - 64	6	Pale brown soft shale . (Contaminated sample with abundant collapse of cuttings from Kalahari layers.)	RIETMONI
64 - 71	7	Pale brown fine to medium grained calcareous sandstone. Occasional larger pebbles embedded in sandstone.	

	Brown sandstone, medium to coarse-grained, porous.	3	71 - 74
	Calcareous with scattered occasional quartz pebbles.		
	Light brownish fine to medium grained sandstone,	15	74 - 89
	calcareous. At 88-89 m abundant rounded pebbles of		
	quartz and chert.		
	Light reddish brown fine-grained sandstone and shale	4	89 - 93
	intercalated. Colour turns to yellowish brown at 93 m.		
RIETMON	Light reddish brown medium to coarse-grained	15	93 - 108
	sandstone with subordinate shale horizons. A coarse		
	pebbly horizon was intersected at 105 m.		
	Reddish brown fine to medium grained sandstone.	10	108 - 118
	Abundant washout from upper horizons in sample.		
	(Washed sample not representative!)		
	Light brown to white sandstone, medium to coarse	25	118 - 143
	grained to 134 m and fine to very fine grained, fining		
AUOB	downwards to 143 m. Moderately calcareous in		
A5	horizons. Porous. (Sample impure due to washout and		
	re-drilling of Kalahari beds.)		
	Yellowish to light red shale, soft. Shale ground up and	6	143 - 149
AUOB	lost in washed sample. Sample retained very impure.		
A4	Soft shale observed during drilling only.		
	Fine to very fine-grained calcareous light reddish	2	149 - 151
	brown calcareous sandstone.		
	Sample lost due to change over to air rotary method	2	151 - 153
	required for water sample collection.	~	101 100
	Dark reddish to purple feldspathic, non-calcareous	5	153 - 158
	sandstone, fine to coarse grained. Grains mostly sub-	5	100 100
	rounded to sub-angular. At 158 m colour greyish		
	brown.		
AUOB	Pale grey brown soft shale, sandy.	1	158 - 159
A3	Pale reddish grey shale	1	159 - 160
	Pale brownish to grey shale	3	160 - 163
	Grey micaceous shale. Laminated. Biotite very small	2	163 - 165
	flakes evenly distributed / dispersed. Slightly		
	calcareous.		
	Light grey sandy shale (to very fine-grained	11	165 - 176
	sandstone), laminated with muscovite on laminations.		
	Very thin very fine grained sandstone / siltstone		
	horizons in laminae. Between 171 and 172 m		
	micaceous grey shale only. Moderately calcareous		
	above 170 m.		
	Grey to dark grey shale with minor sandy micaceous	2	176 - 178
	horizons.		
AUOB	Grey shale, poorly laminated with dispersed white	2	178 - 180
A2	calcareous nodules in drill-cuttings.		
	Grey shale, moderately laminated. Non-calcareous.	46,5	180 - 226,5
	Colour gradually changing to dark grey or black.		
	Pale grey fine-grained sandstone, calcareous and	1,5	226,5 - 228
	porous.		

228 - 236	8	Light grey fine-grained sandstone, calcareous and porous and intercalated with grey to dark grey shale at 229 - 233 m and at 235 - 236 m. Shale with biotite flakes on laminations. Sandstone well sorted.	AUOB A1
236 - 240	4	Light grey medium grained sandstone, moderately porous to porous in horizons, calcareous with soft, white calcitic specks disseminated throughout sample.	
240 - 246,5	6,5	As above, with subordinate thin grey shale layers.	
246,5 - 264,5	18,5	Light grey well laminated shale with minor horizons of lighter grey very fine sandstone at 250 m, and a medium grained sandstone horizon at 257 m. Calcareous at 257 and 258 m.	UPPER MUKOROB
264,5 - 270	5,5	Light grey to grey fine to very fine sandstone / siltstone, highly calcareous to 268 m. Porous. Laminated with shaly tops esp. at 270 m.	
270 - 275	5	Laminated light grey to grey siltstone / shale.	
275 - 300	25	Grey shale. Slightly darker grey at 290 -292 m and 298 - 299 m. Generally well laminated, except in dark grey horizons. Dark grey horizons carbonaceous.	
300 - 314	14	Dark grey soft, possibly hydrating carbonaceous shale. White calcitic concretions at 310 - 313 m.	
314 - 315	1	AS above, with 0,5 m fine to medium grained light grey calcareous sandstone horizon.	LOWER MUKOROE
315 - 323	8	Light grey to grey laminated shale.	
323 - 336	13	Dark grey to black bituminous shale, laminated in horizons. Clogging tri-cone drill-bit. (Fresh not drilled samples included in chip tray) Change over to clay cutting drill-bit resulted in simultaneous short core cuttings, also included in chip tray.	
336 - 345,5	9,5	Thin hard horizons of light grey calcareous sandstone , fine to medium-grained and micaceous, at 336 - 338 m. Well laminated shale at 340 - 341 m. Light grey, well laminated, fine grained sandstone, calcareous at 342 - 343 m, fining downwards to a non-calcareous siltstone, also well laminated.	NOSSOB
345,5 - 357,8	12,3	Grey well laminated shale. Very thin siltstone horizon at 351/352 m.	
357,8 - 360	2,2	Laminated fine-grained sandstone, light grey, intercalated with grey shale in very thin laminae. Calcareous at 360 m.	
360 - 366	6	As above, with shale laminae dominating with increasing depth.	
366 - 397	31	Hard, laminated grey shale. Homogenous.	
397 - 409 EOH	12	Intercalated siltstone/shale . Shale grey with siltstone light grey. At 398 m a thin horizon of fine-grained sandstone was intersected. Siltstone dominating with depth.	DWYKA

General Comment:

- 1. This borehole was cased and pressure-grouted to a depth of 270 m.
- 2. The lower portion of the Mukorob shale is clogging the tricone drill-bit. Very tacky and bituminous.
- 3. Re-drilled quartz grains contained in each sample up to 151 m indicates probable washout from upper Kalahari horizons.

This borehole was logged by F. Bockmühl on 10 June 2000.

2. Penetration Record

Depth (m) Pen. ra	ation Record Borehole ate (min /m) Time	Date	39844 Remarks
1		Duto	Start Drilling for conductor pipe
			etart Etimig ter conductor pipe
5			
10			
	2.8		
	3 5.6		
	1.9		
	2.1		
	2.9		
	2.35		
	2.7		
	4.9		
20	13.7		
	17.1		
	14.9		
	11.1		
	17.8		
	5.6		
	4.1		
	5.55		
	6.65 3.6		
30	3.5		
00	5.8		
	8		
	6.6		
	6.6		
	7.6		
	10.2		
	10.8		
	16		
	7.8		

40 46

40

50

4.65 12.8 31 20.65 4.85 5.7 6.9 7.3 12.7 17.3 4.7 10.95 8.95 8.95 8.75 2.5

	8.3
	4.1
	9.75
	7.3
	3.4
60	3.4
	3
	3.1
	3.9
	10.7
	9.9
	8.35
	7.75
	9.1
	4.15
70	3.7
	3.8
	4.25
	5.65
	9
	6.6
	5.5
	6.8
	5.8
	7.2
80	3.1
	4.9
	2.9
	2.1
	9.2
	4.2
	3.1
	2.6
	5.5
	4.9
90	5.3
	5.8
	5.6
	5.5
	5.35
	5.2
	77

7.7 1.7 2.8 6.8 6.7 2.1 2 3.95 6.95 4.7 4.7 4.7 4.7 5.65 7.25

100

	6.6
	7.4
	8
	7.95
	8.6
	3.1
	3.2
	3.4
	4.75
120	5.2
	4.4
	6.15
	5.6
	6.2
	5.75
	5
	4.6
	4.65
	5.1
130	3.45
	3.2
	3.7
	3.4
	4.8
	2.6
	44.35
	5.5
	4.7
	5.45
140	3.1
	3.1
	5
	8.2
	10.15
	8.2
	4.4
	7.1
	7.1
150	6.6
150	7.9
	1.5

7.7

8.5 3.3 9.7

12.2 12.9

13.7 13.6 6.2

5.35 9.2

9.85

160

6.7 8.65 10.75 170 6.1 7.6 7.9 8.2 9.5	
11.2 6.9 4.6 5.2 180 5.1 5.75 9.45 4.3 5.25	
4 5.95 5.4 5.4 190 5.85 7.2 5.25 5.1 4.35 5.6	
5.2 5.45 6 6.7 200 5.2 5.8 6.1 6.3 6	
Depth (m) Pen. Rate (min/m) 205 7 5.4 4.45	

210

4.45 5.2 5.55 5.55 6.7 6.15 5.4 5.4 6.25 6.1 7.4 5.75 5.8 4.9

	4.75	
	4.65	
	5.25	
	5.15	
	6	
	4.9	
	3.75	
	5.75	
230		
	5.5	
	2.7	
	3.3	
	26.6	
	7.75	
	4.6	
	2.6	
	2.65	
	2.7	
240	2.85	
	2.85	
	3.2	
	2.6	
	2.95	
	4.85	
	6.4	
	8.35	
	10.15	
	8.7	
250	7.7	
	8.6	
	7.3	
	6.3	
	7.8	
	7	
	5.2	
	8.7	
	9.6	
	9	
260	10	
	7.6	
	9.5	
	9.75	

9.75 12.5 26.85 19.5 5.5 4.3 5.7 6.5 6.5 6.15 9 9.1 9.6 8.8 8.1

270

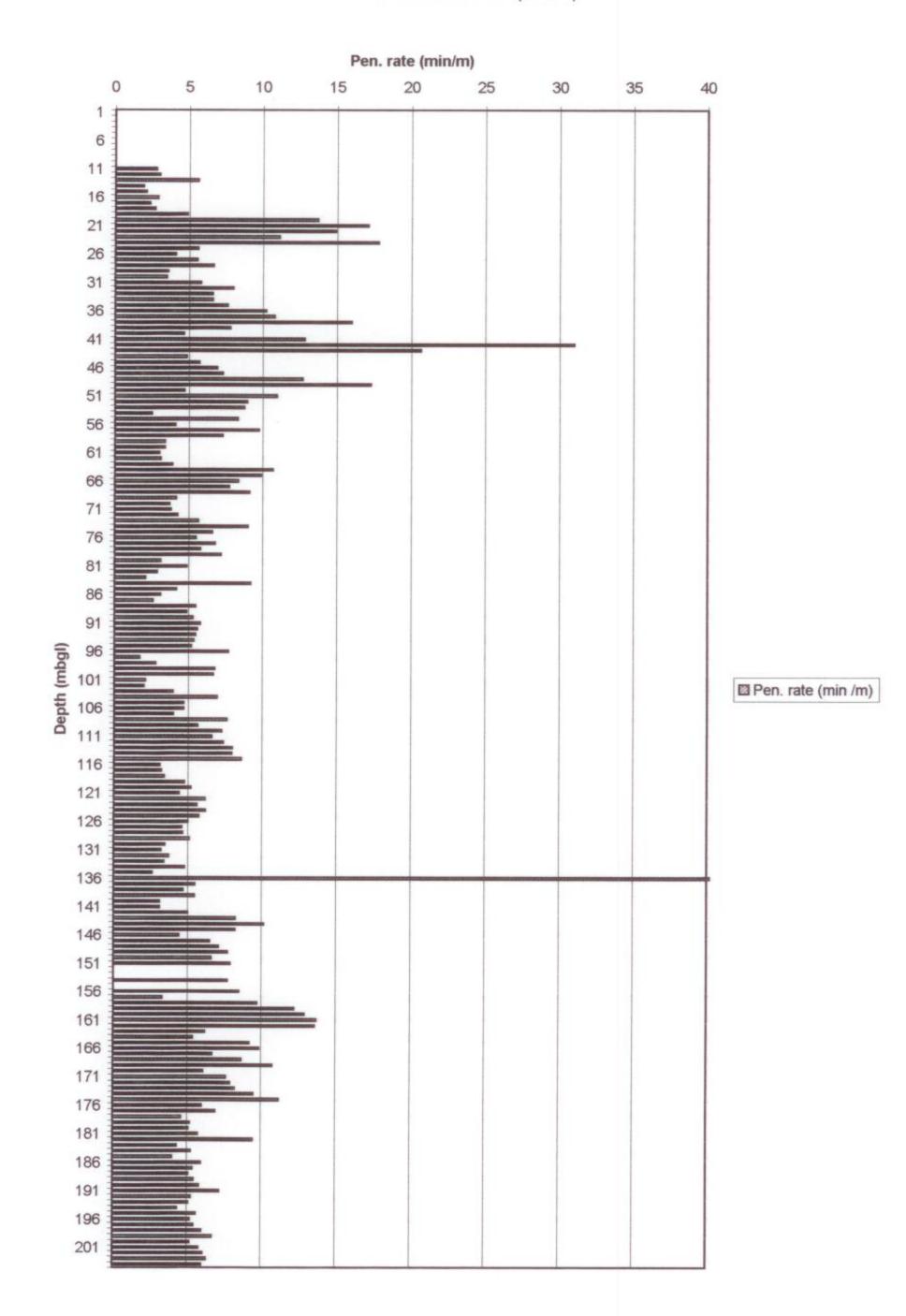
	8.65
	9.1
280	8.9
	9.7
	8.1
	9.75
	9.9
	8.95
	9.8
	9.8
	8.8
	7.5
290	7.1
	7.8
	10.4
	11.75
	11.55
	10.5
	10.6
	6.8
	8.3
	8.9
300	8.7
	9.15
	8.4
	8 7.6
	8
	7.75
	8.4
	8.65
	8.35
310	8.75
0.0	10
	Sep-25
	9.6
	8.75
	0.1
	8.5
	7.7
	8.6

320

330

9.7 9.75 9.45 11.7 10.1 8.9 9.5 3.6 4 4 4.6 4.8 4.6 4.55

	5.75
	7.8
	6.9
	28.7
	10.75
	9.75
340	10.2
	12.6
	28.9
	16.7
	8.1
	11.1
	9.55
	10.4
	12.3
	1.7
350	14.6
	15.8
	14.45
	15
	13.9
	14
	12.65
	9.1
	9.8
	6.7
360	21.4
	9.1
	9.7
	10.4
	9.3
	11.8
	10.65
	10.2
	9.35
	10.4
370	8.35
	10.2
	10.1
	10.5
	11.2
	18.2


18.2 11.7 10.8 11.55 10.95 9.9 10.7 10.8 11.2 11.7 13.1 11.15 11.5 12.1 11

Seite 7

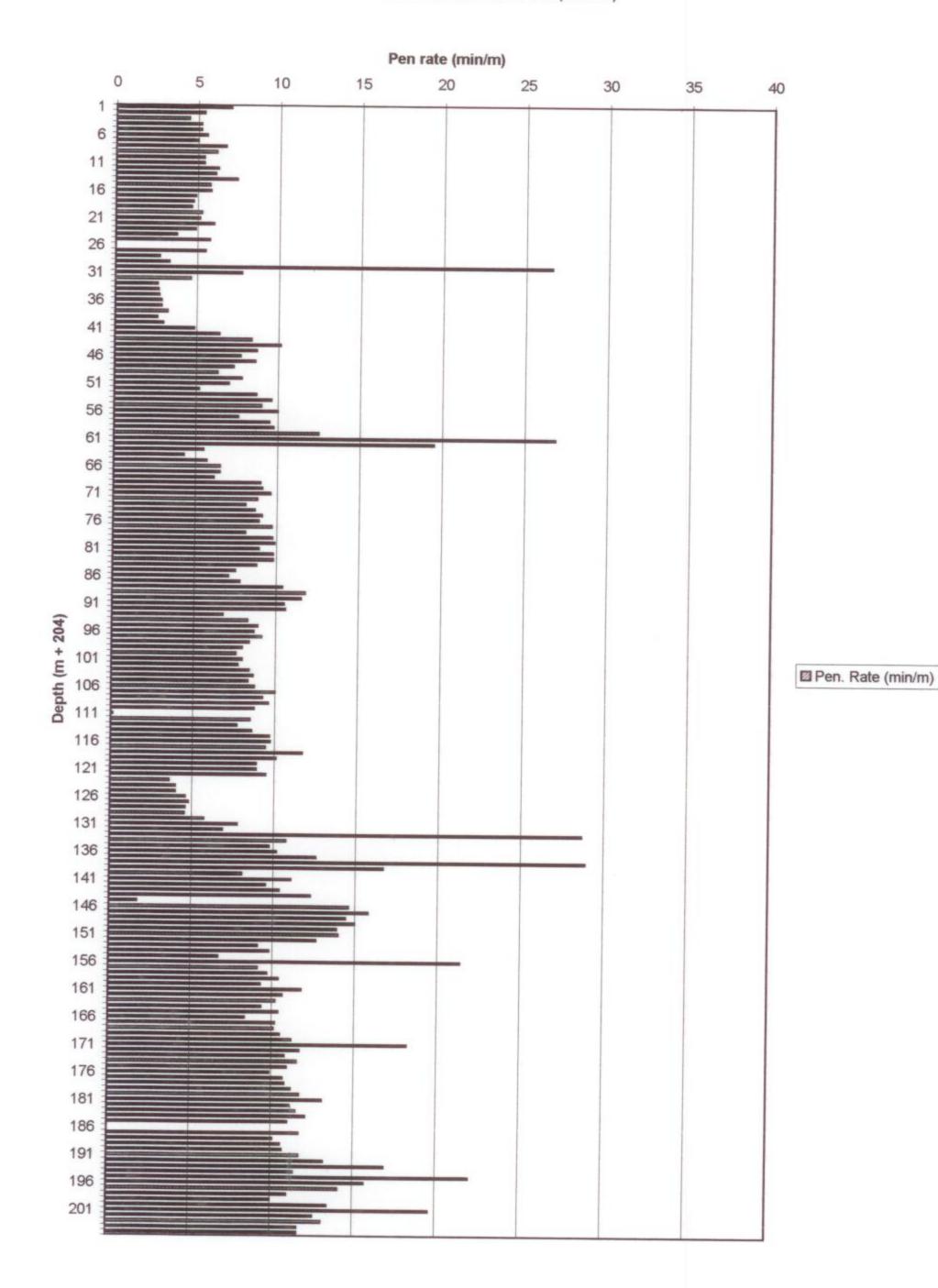
000	
	11.7
	10.1
	10.6
	10.7
	11.7
	13.2
	16.9
	11.4
	22
400	15.7
	14.1
	11
	10
	13.45
	19.6
	12.6
	13.1
	11.66
409	11.66

Peneration Record J 3 (Part 1)

	ecord J 3 N (second part) Pen. Rate (min/m)
205	7
	5.4
	4.45
	5.2
	5.2
210	5.55
	5
	6.7
	6.15
	5.4
	5.4
	6.25
	6.1
	7.4
	5.75
220	5.8
	4.9
	4.75
	4.65
	5.25
	5.15
	6
	4.9
	3.75
	5.75
230	
	5.5
	2.7
	3.3
	26.6
	7.75
	4.6
	2.6
	2.65
	2.7
240	2.85
	2.85
	3.2
	2.6
	2.95

2.95 4.85 6.4 8.35 10.15 8.7 7.7 8.6 7.3 6.3 7.8 7 5.2 8.7 9.6

Seite 1


260	9 10 7.6 9.5 9.75 12.5 26.85 19.5 5.5 4.3
270	5.7 6.5 6.5 6.15 9 9.1 9.6 8.8 8.1 8.65
280	9.1 8.9 9.7 8.1 9.75 9.9 8.95 9.8 9.8 9.8 8.8
290	7.5 7.1 7.8 10.4 11.75 11.55 10.5 10.6 6.8 8.3
300	8.9 8.7 9.15 8.4 8 7.6 8 7.75 8.4 8.65 8.25
310	8.35 8.75 10 9.25 9.6 8.75

320	0.1 8.5 7.7 8.6 9.7 9.75 9.45 11.7 10.1 8.9 8.9
330	9.5 3.6 4 4.6 4.8 4.6 4.55 5.75 7.8
340	6.9 28.7 10.75 9.75 10.2 12.6 28.9 16.7 8.1 11.1
350	9.55 10.4 12.3 1.7 14.6 15.8 14.45 15 13.9 14
360	12.65 9.1 9.8 6.7 21.4 9.1 9.7 10.4 9.3 11.8
370	10.65 10.2 9.35 10.4 8.35

	Tabelle2
380	$10.2 \\ 10.1 \\ 10.5 \\ 11.2 \\ 18.2 \\ 11.7 \\ 10.8 \\ 11.55 \\ 10.95 \\ 9.9 \\ 10.7 \\ 10.8 \\ 11.2 \\ 11.7 \\ 13.1 \\ 11.15$
390	11.5 12.1 11 11.7 10.1 10.6 10.7
400	11.7 13.2 16.9 11.4 22 15.7 14.1 11 10 13.45 19.6 12.6
409	13.1 11.66 11.66

Penetration Record J 3 N (Part 2)

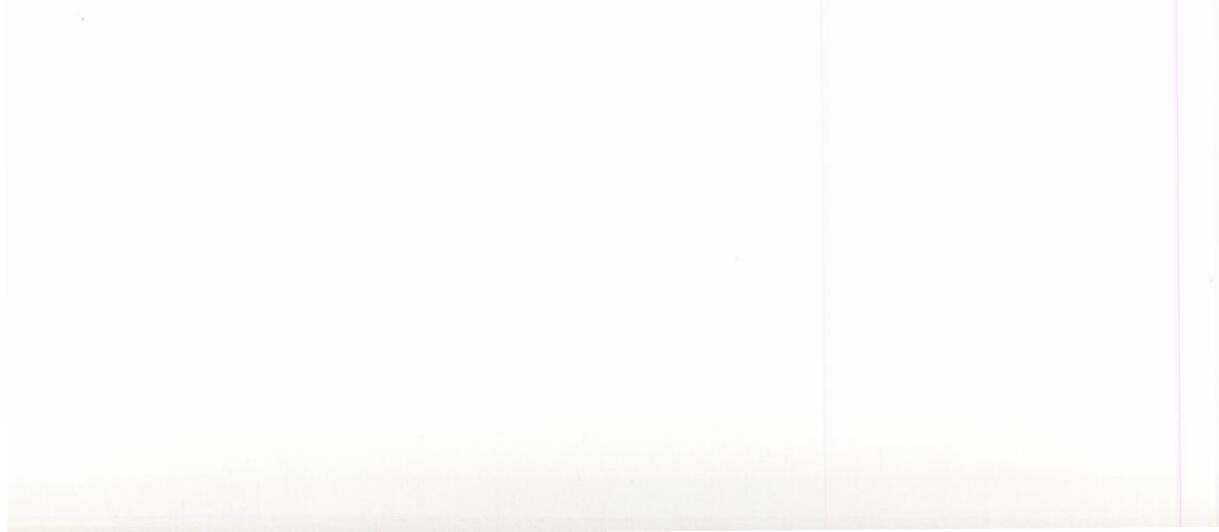
3. Mud Rotary Drilling Log

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

MUD ROTARY DRILLING LOG

JICA REFERENCE: J 3 N LOCALITY: Choroaoheib WW 39844 DATE: 21 May to 6 June 2000

TIME	DEPTH mbgl	MARSH FUNNEL TEST 1000 ml (sec)	MARSH FUNNEL TEST 500 ml (sec)	E. C. mS/cm	DENSITY	рН	TEMPERATURE ° C	COMMENT	
17:50	8	35	24	10.13	≤1.16	8	27.5	Drilling for conductor pipe	
	42	33	22	10.53		8			
	101	35	23	10.5	≤1.16	8			
17:30 (25/05)	151	35 29	24	10.13		8	27.5	Drillfluid Watan una d fan mining drillfluid	
14:40	158	33	22	11.00		8	22	Water used for mixing drillfluid After air rotary drilling on	
14.40	150	55	22	10.5		0	21.5	27/05/00	
	180	35	24	10:53		8	26.8	27/05/00	
16:20	270	34	22	10.1		8	27.4	At end of 9 7/8", start of log.	
(28/05)	271	29		11.00		8	21.5	Water used for mixing	
18:00	320	34	22	12.35	≤1.16	8	28.3	Drilling 7 7/8"	
(31/05)									
21:30	409	33	22	12.6		8	26.3	At end of trip, before logging.	
(02/06)		29		11.8		8	20.3	Water from tanker.	


GENERAL REMARKS:

- 1. Geophysical logging took place in three steps: at \$\$\phi\$ 12 1/4" to 151 m, followed by the second step at \$\$\$\phi\$ 9 7/8" to a depth of 271 m and finally in a borehole diameter of 7 7/8" to 409 m.
- 2. To obtain the electrical resistivity for the samples, the E.C., expressed in S/m, should be inversed.

4. Geophysical Log and Casing Design

5. Borehole Development Data

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

BOREHOLE DEVELOPMENT DATA

JICA REFERENCE: J 3 N LOCALITY: Choroaoheib R 300 WW 39844 DATE: 08/06/2000 (starting)

Remarks	E.C. (mS/m)	Yield (m ³ /h)	¹ /2 90° V-Notch (mm)	P.I.D. (mbsu)	TIME (actual)
Start developing above plug and above lower ope screen. Date 08/06/2000				360	16:00
	486	4	75		16:07
	463	0.36	30		16:30
Still only drill-fluid.	433	0.6	35		16:45
	426	0.4	32	360	17:05
		0.4	32		18:05
Water very grey muddy dirty.	417	0.4	32		18:50
	426	0.6	35		19:40
	426	0.6	35		20:05
Continue throughout the night.		0.4	32	360	22:10
Pale grey drill fluid. Date 09/06/2000.	467	0.4	32		06:46
Stop to allow water to recover.		0.4	32		08:05
Re-start airlift.					14:00
Drill-fluid.		0.36	30		14:20
Increase airflow.	435	0.6	35		15:45
Grey, dirty drill-fluid.		0.4	32		16:30
Muddy		0.4	32	360	18:00
Continue through the night.		0.4	32		19:10
Date 10/06/2000		0.4	32		08:00
Level 62.56 m		0.36	30		09:00

TIME (actual)	P.I.D. (mbsu)	¹ / ₂ 90° V-Notch (mm)	Yield (m ³ /h)	E.C. (mS/m)	Remarks	
10:00	360	28	0.3		Level 62.55 m.	
11:00		40	0.72		Level 71.30 m. Increased airflow.	
12:00		28	0.3		Level 66.20 m.	
13:00		28	0.3		Level 65.75 m.	
14:00		32	0.4		Level 66.70 m.	
15:00		30	0.36		Level 65.90 m.	
16:00		30	0.36		Level 63.50 m.	
17:00	360	30	0.36		Level 65.80 m.	
18:00		32	0.4		Level 73.80 m.	
19:00		30	0.36		Level 72.43 m.	
20:00		32	0.4		Level 67.84 m.	
21:00		30	0.36		Level 67.60 m. Water still very milky with drill fluids	
22:00		32	0.4		Level 66.63 m. Stop airlift for the day to recover	
08:00					Start compressor again. Date 11/06/2000.	
08:30		32	0.4		Water milky.	
09:00		28	0.3			
10:00		32	0.4			
11:00		28	0.3			
12:00		32	0.4			
13:00		28	0.3		Water milky.	
14:00		32	0.4			
15:00		28	0.3			
16:00		28				
17:00		32	0.4			
18:00		32			Water slightly milky.	
19:00		28	0.3			
20:00		32	0.4			

R	E.C. (mS/m)	Yield (m ³ /h)	¹ / ₂ 90° V-Notch (mm)	P.I.D. (mbsu)	TIME (actual)
Water slightly milky. C		0.3	28	360	21:00
Water cloudy. Stop	427	0.3	28	360	06:00

Remarks:

- 1. A total of 77 hours airlift has been conducted. This deep and low-yielding borehole took a very long time to be cleared of drilling fluids.
- 2. Development was continued by electrical submersible pump.

Remarks

Continue to airlift through the night. op airlift. Date 12/06/2000.

6. Evaluation of Pumping Test

1. FREE FLOW - PRESSURE PROBE TEST ANALYSIS

J3-N (WW39847) – Free flowing artesian well

1.1. Well Efficiency (Step draw down test) (Annex 1)

Well Efficiency was analysed by making use of the Jacob method for draw down data. Aquifer parameters used for the calculation of well efficiency were obtained from the evaluation results of the constant discharge test, which is discussed in **Section 1.2** below.

The well efficiencies at the range of flow rates used during the step draw down test are summarised in **Table 1** below. At the very low flow rates the well efficiency is obviously very high and the main contributor to the draw down is the linear aquifer loss.

Borehole number	Step	Abstraction Rate [m ³ /h]	Draw Down* [m]	Borehole Efficiency [%]
	1	0.06	6.9	86.8
J3-N	2	0.08	10.6	85.1
	3	0.15	19.6	79.4

Table 1: J3-N; Borehole efficiency at various flow rates

* at cut-off time Δt , after which well bore storage has no affect on the well performance

Data on the linear and non-linear well losses and skin factors as well as the efficient well radius are presented in Annex 1.

1.2. Constant Discharge Test Analysis (Annex 2 - 4)

The constant discharge draw down curve of abstraction borehole **J3-N** indicates confined aquifer conditions. It was attempted to keep a constant flow rate of 0.1 m³/h by adjusting a valve at the outlet. During the second part of the test, however, the flow rate declined to rates of 0.4 m³/h, thereby allowing the borehole to recover. The draw down curve could therefore not be evaluated. The Theis recovery method with data from the step test and the constant discharge test was used to calculate the hydraulic conductivity of the aquifer (Annex 2 & 3).

The aquifer storativity was estimated due to the lack of observation boreholes. The results of the constant discharge analysis are summarised in **Table 2** below.

Table 2: Aguifer Parameters calculated for J3-N; Nossob s	sandstone
---	-----------

Borehole number	Analysis method	т	S	k	S	Simulation	
		[m ² /day]	[m]	[cm/sec]	[-]	model	
J3-N	Theis recovery CD - test	1.30	30	5.0 x 10 ⁻⁵	*2 x 10 ⁻⁵	Theis	
	Theis recovery Step - test	1.72	30	6.6 x 10 ⁻⁵	*2 x 10 ⁻⁵		

* estimated

The Theis model for confined aquifer conditions was used to simulate and verify the actual data and analysis approach of the constant discharge test. Simulation parameters summarised in **Table 2** were used in simulation of the actual free flow test data (See **Annex 4** for simulation results).

The radius of influence (R) was estimated after SICHARDT (1928) using the equation:

 $R = 3000 \times s \times K_f^{1/2}$

 $R = 3000 \times 12.7 \times 7.6 \times 10^{-4} = 29 m$

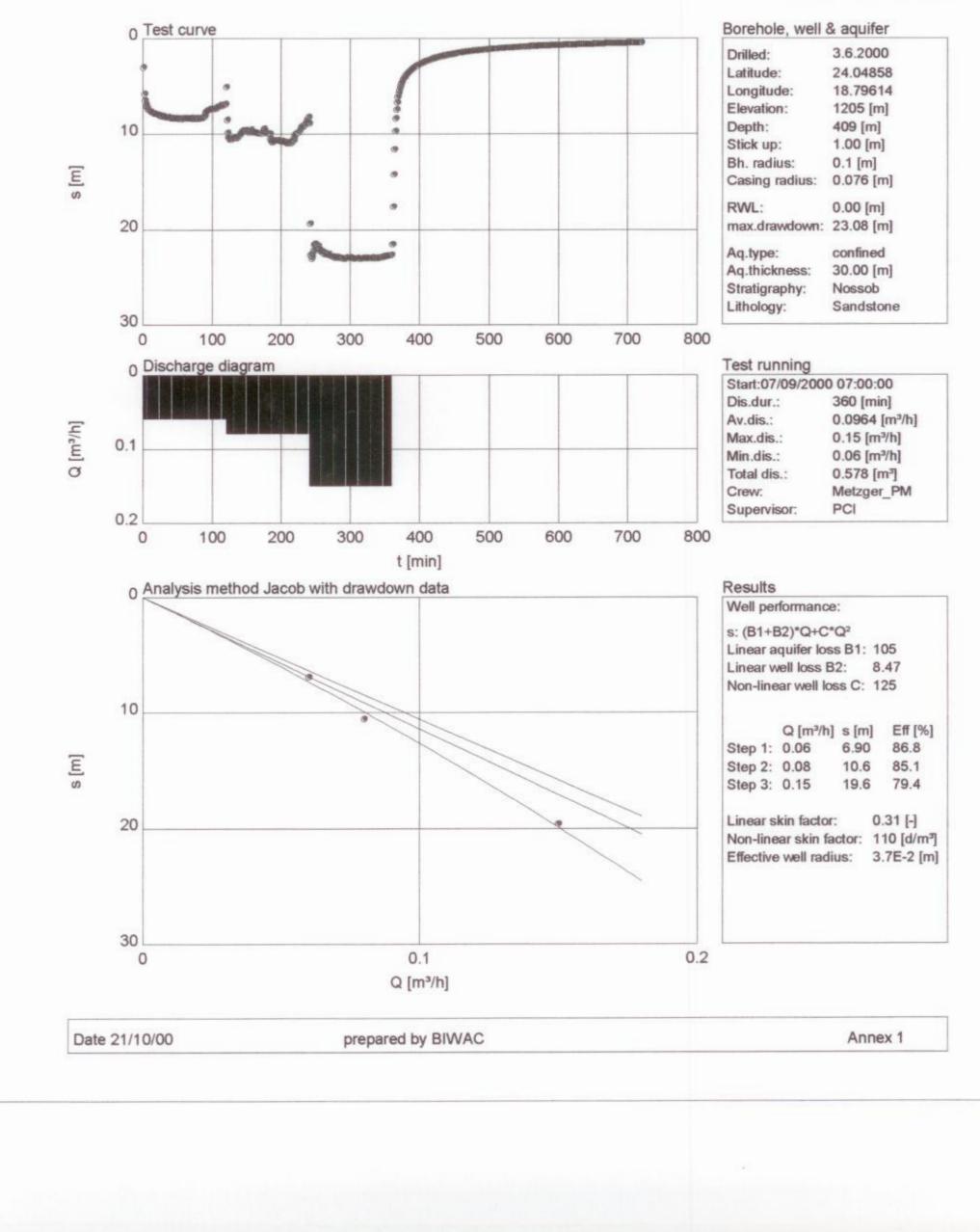
where

R = Radius of influence

s = Draw down in abstraction borehole at end of pumping

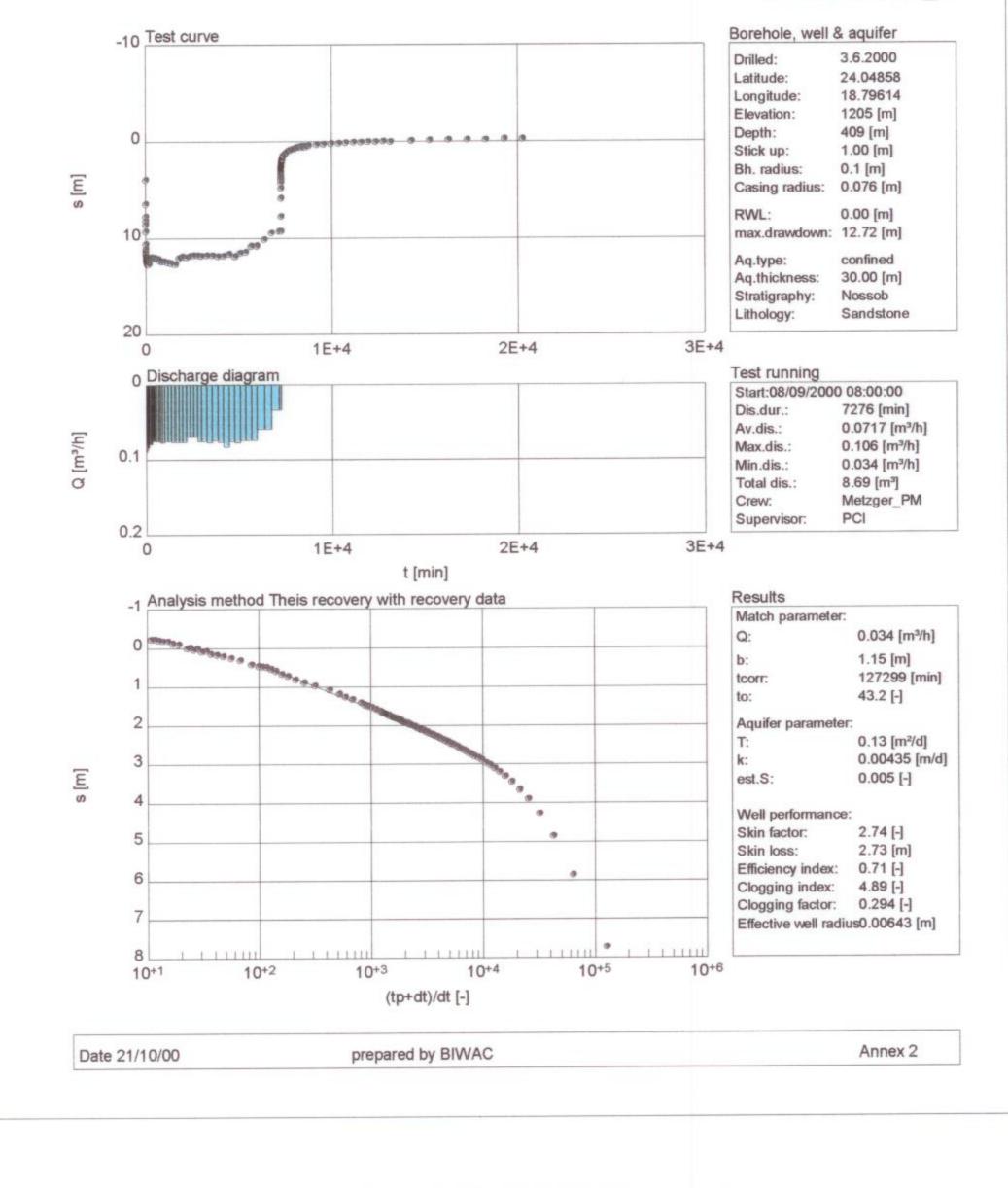
K_f = Permeability of the aquifer

The equation is approximately correct for unconfined aquifers. In case of a confined aquifer the radius of influence most probably larger and the 29 m are considered to be the minimum value.


A proper evaluation of R (and storativity S) will only be possible once reliable data from observation wells, penetrating the same aquifer as the pumped well, are available.

Evaluation of Test Pumping Data

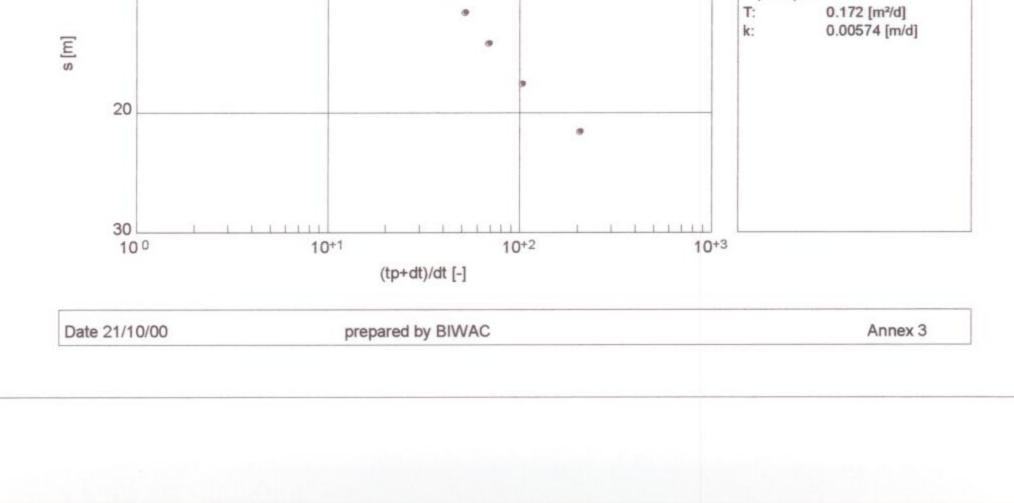
Pressure probe step test analysis


Tested well J3_N

Evaluation of Test Pumping Data

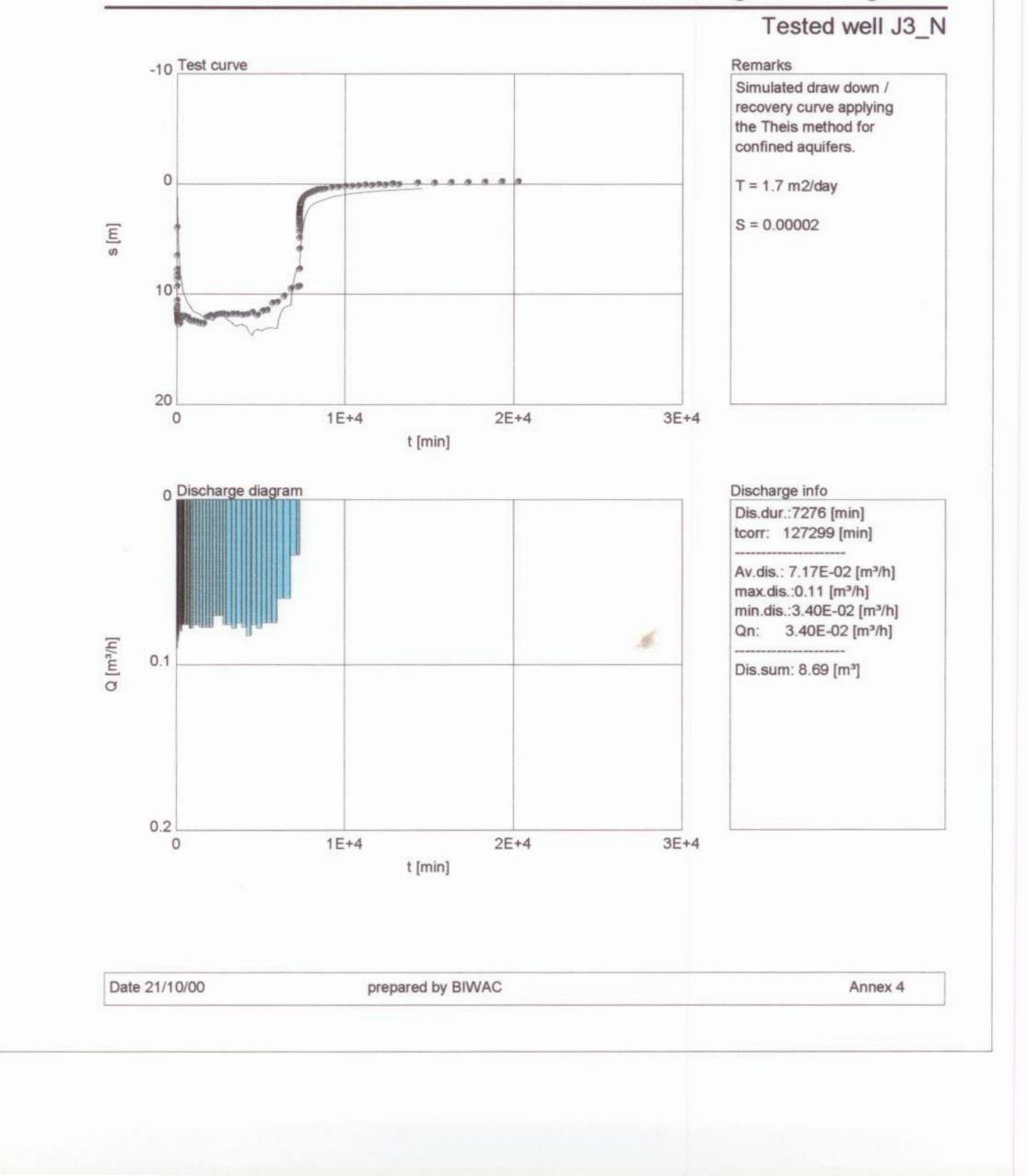
Pressure probe constant discharge test

Tested well J3_N



Evaluation of Test Pumping Data

Step test recovery analysis


0 Test curve Borehole, well & aquifer Drilled: 3.6.2000 24.04858 Latitude: 18,79614 Longitude: Elevation: 1205 [m] Depth: 409 [m] 10 Stick up: 1.00 [m] 9 Bh. radius: 0.1 [m] s [m] . Casing radius: 0.076 [m] RWL: 0.00 [m] ۲ 20 max.drawdown: 23.08 [m] 9 Aq.type: confined Aq.thickness: 30.00 [m] Stratigraphy: Nossob Lithology: Sandstone 30 0 100 200 700 800 300 400 500 600 0 Discharge diagram Test running Start:07/09/2000 07:00:00 Dis.dur.: 360 [min] Av.dis.: 0.0964 [m3/h] Q [m³/h] 0.15 [m³/h] Max.dis.: 0.1 Min.dis.: 0.06 [m3/h] Total dis.: 0.578 [m³] Crew: Metzger_PM PCI Supervisor: 0.2 400 600 700 0 100 200 300 500 800 t [min] O Analysis method Theis recovery with recovery data Results Match parameter: Q: 0.15 [m³/h] 199933 9 9 9 9 3.83 [m] b: tcorr: 204 [min] to: 1.19 [-] 10 Aquifer parameter:

Tested well J3_N

Evaluation of Test Pumping Data

Constant discharge test diagnosis

7. Water Level Recorder Installation

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

INSTALLATION OF SEBA FLOATERS

JICA REFERENCE: J 3 N LOCALITY: Choroaoheib R 300

WW 39844

1.	Serial Number of floater:	F 20223
2.	Date installed:	
3.	Rest Water Level when installed:	artesian
4.	Distance from stick-up to logger:	n/a
5.	Distance from logger to water level:	n/a
6.	Cut off:	n/a