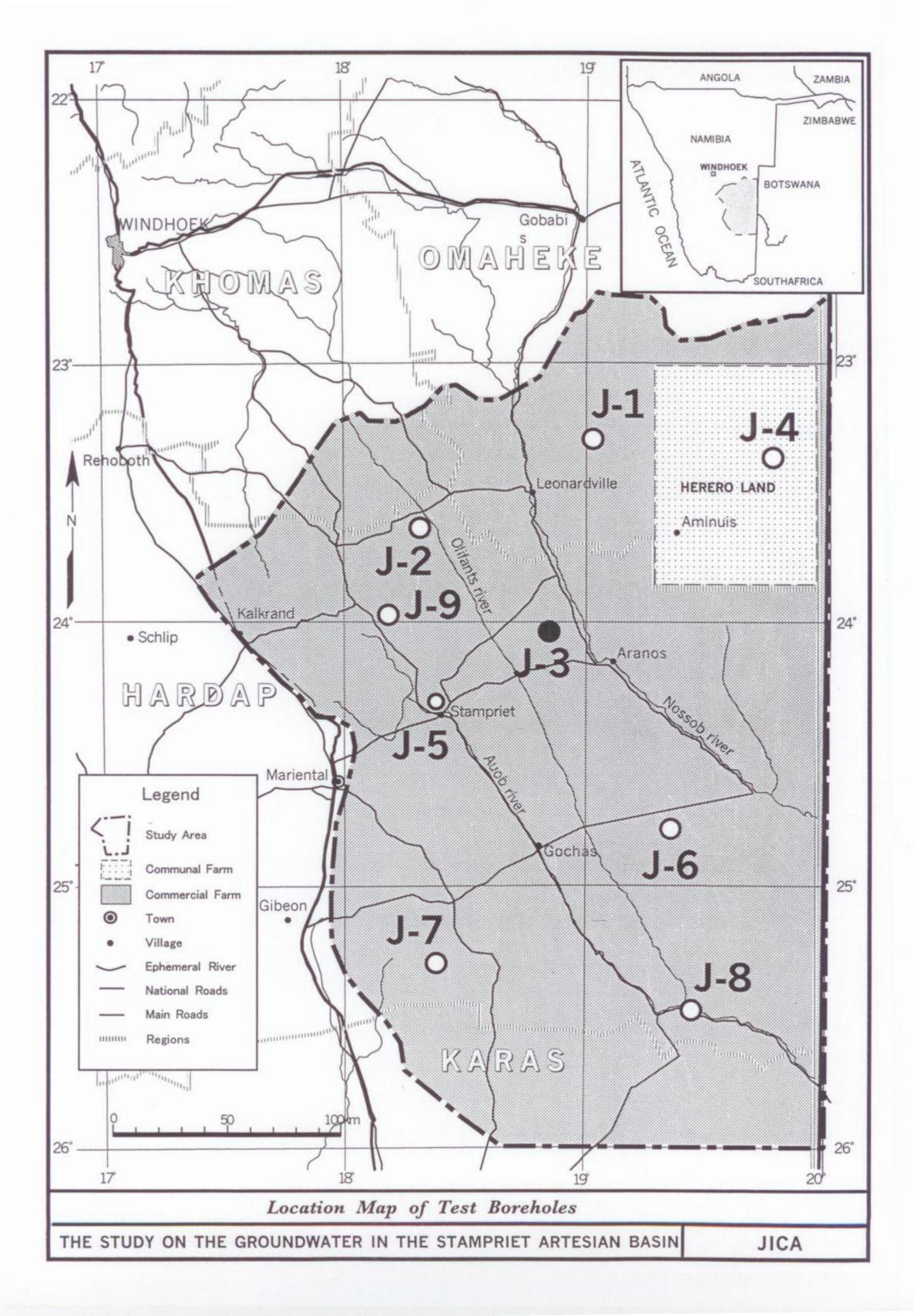
STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN FOR THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN IN THE REPUBLIC OF NAMIBIA

Japan International Cooperation Agency Pacific Consultants International


BOREHOLE FINAL REPORT

Borehole J3-A (WW 39843) Choroaoheib R 300

METZGER PM DRILLING

P.O.Box 11733 Windhoek Namibia

> Windhoek October 2000

Contents per Chapter

- 1. Geological Borehole log
- 2. Penetration Record
- 3. Mud Rotary Drilling Log
- 4. Geophysical Log and Casing Design
- 5. Borehole Development Data
- 6. Evaluation of Pumping Test
- 7. Water Level Recorder Installation

1. Geological Borehole Log

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

GEOLOGICAL BOREHOLE LOG

Farm Choroaoheib R 300 (Ptn Steynsrus)	WW 39843
Jica Reference: J - 3 - A	S 24, 04792°
Date completed: 10 June 2000	E 18, 79312°
(final casing installed)	Collar elev.: 1205 m

Depth below surface (m)	Section (m)	Lithology	Stratigraphy		
0 - 10	10	Massive white to light grey sandy calcrete . A shallow cover of reddish brown medium to coarse sand. A conglomerate horizon, partially cemented by calcrete, was intersected at 4 to 8 m			
10 - 12	2	Sandy and gravelly calcrete. Washed sample dominated by coarse fraction. Pebbles well rounded.			
12 - 25	13	Calcrete. Sandy up to 16 m, coarsening to a conglomerate with increasing depth.	KALAHARI		
25 - 27	2	Coarse gravel in a yellowish orange clayey matrix.			
27 - 38	11	Greyish-white massive calcrete-conglomerate: predominantly reworked red sandstone in a calcareous matrix.			
38 - 48	10	Quartz pebbles to small boulders, poorly cemented by calcrete to a conglomerate . Coarser fraction highly ground by drilling action.			
48 - 59	11	Reddish brown calcareous, fine to coarse grained unsorted sandstone.			
59 - 73	14	Pale reddish brown calcareous sandstone , fine to medium grained, progressing to a basal conglomerate at 73 m.			
73 - 76	3	Coarse pebbles in a pale reddish sandstone matrix.	RIETMOND		
76 - 111	35	Light reddish to brownish fine to medium grained sandstone with frequent larger pebbles occurring throughout the sample. The drilled sample has a clayey appearance, indicating the presence of intercalated regular soft shale horizons	RIETMOND		
111- 121	10	Reddish brown fine to medium grained sandstone. Abundant dispersed pebbles within sample.			
121 - 122	1	Medium to coarse grained reddish feldspathic sandstone. Calcareous.			
122 - 126	4	Medium grained white to pale grey sandstone. Calcareous in horizons.	AUOB A5		
126 - 145	19	Coarse grained sandstone, light brown to white with disseminated white gypsum specs. Moderately calcareous in places. Below 129 m the samples collected are highly contaminated by coarse washout from upper Kalahari beds.			

145 - 151	6	Highly contaminated sample: Probably the same horizon as in J - 3 - N at 143 m to 149 m.	AUOB A4 ??	
151 - 157	6	Medium to coarse grained reddish to grey calcareous sandstone. At 157 m the sample is purplish in colour and feldspathic.		
157 - 159	2	Pale reddish brown soft shale, sandy.		
159 - 164	5	Pale brownish grey shale.		
164 - 170	6	Grey sandy shale, slightly micaceous with siltstone intercalated at 167 to 170 m. Moderately calcareous.	AUOB A3	
170177	7	Light grey sandy shale, laminated with muscovite on laminations at places. Very thin very fine sandstone / siltstone horizons in laminae.		
177 - 182	5	Grey shale with minor sandy micaceous horizons. Clogging drill-bit.		
182 - 226,5	44,5	Grey shale moderately laminated. Non-calcareous. Colour gradually changing to dark grey and black with depth.	AUOB A2	
226,5 - 230	3,5	Pale grey calcareous sandstone fine-grained, porous.		
230 - 235	5	Light grey fine-grained sandstone, calcareous and porous and intercalated with grey to dark grey shale. Sandstone well sorted.	AUOB A1	
235 - 246	11	Light grey medium grained sandstone, moderately porous to porous in horizons, calcareous with white calcite specks disseminated throughout sample.		
246 - 253 EOH	7	Light grey well laminated shale with minor horizons of lighter grey very fine sandstone.	MUKOROB	

Remarks:

- 1. The mud-rotary drilling method was employed, resulting in highly ground drill-cuttings through relative slow up-hole velocity.
- Continuous wash-out from the poorly consolidated upper Kalahari horizons result in a contamination of samples collected from below.

This borehole was logged by F. Bockmuhl.

145 - 151	6	Highly contaminated sample: Probably the same horizon as in J - 3 - N at 143 m to 149 m.	AUOB A4 ??	
151 - 157	6	Medium to coarse grained reddish to grey calcareous sandstone. At 157 m the sample is purplish in colour and feldspathic.		
157 - 159	2	Pale reddish brown soft shale, sandy.		
159 - 164	5	Pale brownish grey shale.		
164 - 170	6	Grey sandy shale, slightly micaceous with siltstone intercalated at 167 to 170 m. Moderately calcareous.	AUOB A3	
170177	7	Light grey sandy shale, laminated with muscovite on laminations at places. Very thin very fine sandstone / siltstone horizons in laminae.		
177 - 182	5	Grey shale with minor sandy micaceous horizons. Clogging drill-bit.		
182 - 226,5	44,5	Grey shale moderately laminated. Non-calcareous. Colour gradually changing to dark grey and black with depth.	AUOB A2	
226,5 - 230	3,5	Pale grey calcareous sandstone fine-grained, porous.		
230 - 235	5	Light grey fine-grained sandstone, calcareous and porous and intercalated with grey to dark grey shale. Sandstone well sorted.	AUOB A1	
235 - 246	11	Light grey medium grained sandstone, moderately porous to porous in horizons, calcareous with white calcite specks disseminated throughout sample.		
246 - 253 EOH	7	Light grey well laminated shale with minor horizons of lighter grey very fine sandstone.	MUKOROB	

Remarks:

- 1. The mud-rotary drilling method was employed, resulting in highly ground drill-cuttings through relative slow up-hole velocity.
- Continuous wash-out from the poorly consolidated upper Kalahari horizons result in a contamination of samples collected from below.

This borehole was logged by F. Bockmuhl.

2. Penetration Record

Depth (m) Pen. Rate (min/m)

1

5 0.7 1.2 2.8 5.6 10 1.65 2 1.3 1.8 2.4 4.75 1.9 2 4.8 1.9 20 2.6 4.7 5.25 5.9 2.5 2.5 3.2 3.4 5.4 7.1 30 7 6.75 6.15 5.75 3.8 3.7 2.9 3.3 2.7 2.45 2.6 2.05 1.7 1.4 3.1 2.7 4 1.85 3.5 4.2 4.1 3 2.7 2.35 2.75 3

40

3.6	
4	
3.85	
4.85	
3.85	
2.8	
3.5	
2.5	
6.5	
5.75	
4.75	
4.75	
4.85	
4.1	
4.5	
4.35	
3.2	
2.7	
4.3	
3.75	
4.25	
4.9	
4	
4.2	
4.45	
3.95	
4.2	
3.5	
3.4	
4	
1.6	
0.85	
2.05	
3.6	
4.05	
5.55	
3.9	
2.3	
4.9	
4.9	
5.75	
5.8	

70

80

90

5.8 1.5 2.1 5.9 5.6 6 5.95 6.6 5.2 5.2 5.3 1.7 4.6 2.75 4.85

110

5
4.85
4.7
4.3
4.2
4.35
4.3
2.5
2.9
2.7
2.4
3
2.75
2.75
3.6
4.45
4.25
5.8
3.2
4.9
3.35
4
2
3.35
4.75
4.8
2.75
3.2
3.6
6.8
6.8
4.9
3.7
3.6
3.2
3.9
3.8
3.35
3.9
4.1
4.6
4.2

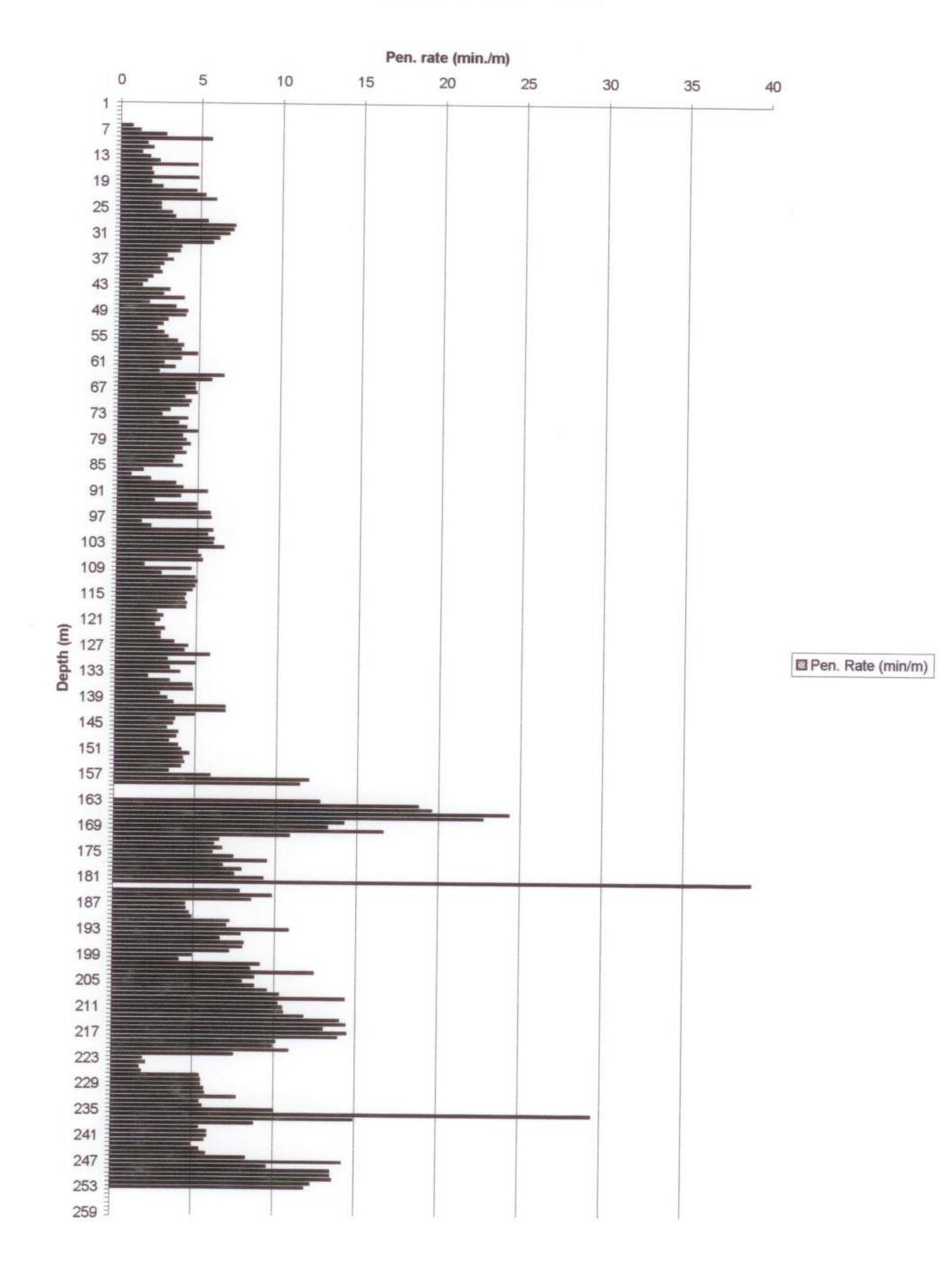
130

140

4.2 4.3 4.1 3.35 5.9 12 11.45

160

150


12.7 18.75 19.55 24.3 22.7

170	14.2 13.2 16.6 10.85 6.5 6.2 6.7 6.1 7.4 9.45 6.75 7.9 7.45 9.25 39.2
190	7.8 9.8 8.5 4.45 4.5 4.7 4.85 7.2 7 10.85 7.9 6.6
200	8.1 8 7.2 4.9 4.1 9.1 8.5 12.4 8.75
210	8 8.75 9.55 10.3 14.35 10.2 10.5 10.55 11.8 14 14 14.4
220	14.4 13 14.45 13.9 10.1 9.9 10.9 7.5 1.9

2.1
1.7
1.85
5.4
5.5
5.5
5.7
5.75
7.7
5.4
5.6
10
29.45
14.9
8.8
5.4
5.9
5.9
5.75
4.9
5.45
5.85
8.3
14.2
9.6
13.5
13.5
13.6
12.3
11.9

Penetration Record J 3 A

3. Mud Rotary Drilling Log

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

MUD ROTARY DRILLING LOG

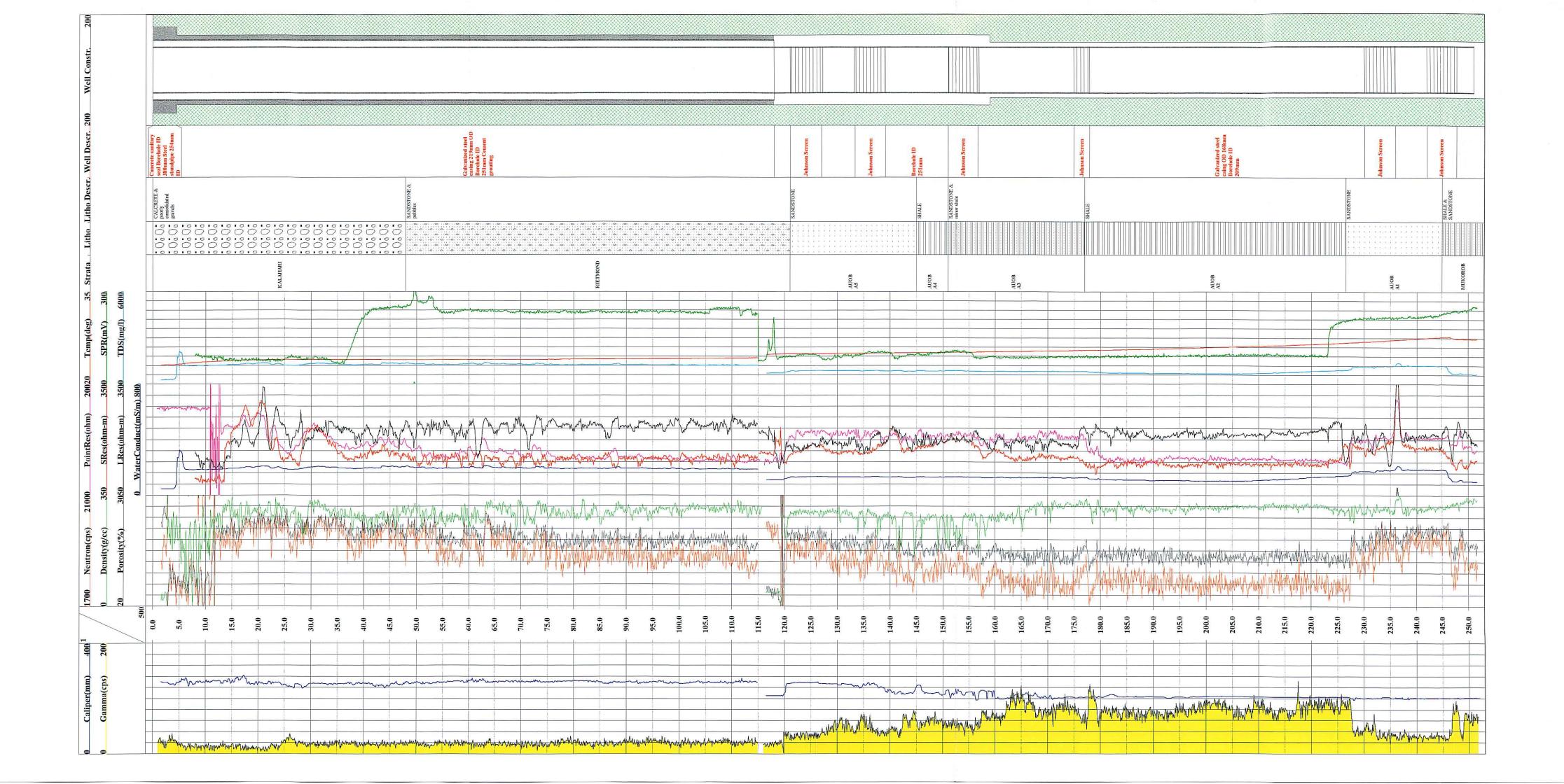
JICA REFERENCE:	J3A	LOCALITY:	Choroaoheib	WW	39843	DATE:
		the second se		And in case of the local division of the loc		And the second se

TIME	DEPTH mbgl	MARSH FUNNEL TEST 1000 ml (sec)	MARSH FUNNEL TEST 500 ml (sec)	E. C. mS/cm	DENSITY	рН	TEMPERATURE ° C	
14:00 (4/6)	159	33 29	22	12.27 11.65	≤ 1.16	8.5 <i>8</i>	21.3 19.3	
07:45 (07/06)	253	34 29	23	12.4 11.5		8.5 8	17.3 14.5	

GENERAL REMARKS:

- 1. This borehole was logged at depths of 159 m (ϕ 9 7/8") and again at 253 m (ϕ 7 7/8").
- 2. Parameters recorded from samples filtered through a very fine sieve.
- 3. To determine the electrical resistivity of the samples as Ω -m., the E.C., expressed as S/m should be inversed (1/x).

03 to 08 June 2000


COMMENT

Before start of geophysics Water from tanker used for mixing. During geophysics Water from tanker used for mixing

4. Geophysical Log and Casing Design

Pos	eiden Geophysics
	CONSULTANT PACIFIC CONSULTANTS INTERNATIONAL
	COMPANY METZGER PM DRILLING
	PROJECT The Study on the Groundwater Potential Evaluation and Management Plan in the Southeast Kalahari (Stampriet) Artesian Basin
ics	WELL ID J3A WW39843
Poseidon Geophysics J3A WW 39843 Choroaoheib J 3 S No. J3A	LOCATION CHOROAOHEIB
CO. Posei WELL.J3A PROJ. LCN. Chor STE. J3 FILING No.	COUNTRY REPUBLIC OF NAMIBIA
BH COORDINATES	S 24.04792 E 18.79312
COLLAR ELEVATION LOG MEAS. FROM G	1205m roundlevel
DRILLING MEAS. FRO	M Groundlevel
DATE	21 May 2000
TYPE LOG	Physical Properties
DEPTH-DRILLER	253m
DEPTH-LOGGER BTM LOGGED INTERV	252.10m /AL 252.10m
TOP LOGGED INTERV	
PERMANENT DATUM	Groundlevel
RECORDED BY	Clemence Kambewu
WITNESSED BY	Frank Bokmuhl
	JICA JAPAN INTERNATIONAL COOPERATION AGENCY

5. Borehole Development Data

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

BOREHOLE DEVELOPMENT DATA

JICA REFERENCE: J 3 A FARM: Choroaoheib R 300 WW 39843 DATE: 11/06/00 (starting)

F	Water level (mbsu)	Yield (m ³ /h)	¹ / ₂ 90° V-Notch (mm)	P.I.D. (mbsu)	TIME (actual)
Start air	12.25	4,68	40 to 120	121	07:40
Water surging result	19.20		40 to 120		08:07
	20.54		40 to 120		08:30
	20.58		35 to 120		08:45
	20.56		35 to 120		09:30
	20.40		35 to 120		10:00
	20.40		35 to120		10:15
	20.40		35 to 120		10:30
	20.40		37 to 118		10:45
	20.40		37 to 118		11:00
	20.40	4	~77		11:15
	20.40				11:30
	20.40				11:45
	20.40				12:00
	20.40				12:15
	20.40				12:30
	20.40				12:45
	20.40				13:00
	20.40				13:15

Remarks
rlift on14/06/00
ts in fluctuations in V-Notch readings

R	Water level (mbsu)	Yield (m ³ /h)	1/2 90° V-Notch (mm)	P.I.D. (mbsu)	TIME (actual)
Water surging resulting	20.40			121	13:30
	20.40	4	~77	121	13:45
	21.47				14:00
	20.40				14:15
	20.40				14:30
	20.40				14:45
	20.43				15:00
	20.40				15:15
	20.40				15:30
	20.40			121	15:45
	20.48				16:00
	20.49				16:15
	20.45				16:30
	19.80				16:45
	20.16				17:00
	20.16				17:15
	22.89				17:30
	30.37				17:45
Develop through	31.65				18:00
15/06 collect 5 * 11iter	30.66	4	~78	121	06:50
	33.88	10.08	110	124	08:30
	33.88				09:30
	33.87				10:30
	33.87				11:30
	34.68	10.08	110	124	12:30

Remarks
ing in approximated V-Notch readings
the night at depth 121 m.
ar samples for A5 water clear @ 07:45

R	Water level (mbsu)	Yield (m ³ /h)	¹ / ₂ 90° V-Notch (mm)	P.I.D. (mbsu)	TIME (actual)
	34.73	11.25	115	127	13:30
	33.68				14:30
	33.68				15:30
	33.68				16:30
	25.68	11.25	115	127	17:00
	25.69	7.92	100	133	17:30
Develop throug	24.68				18:00
Dat	24.67	7.9	100	133	07:00
	23.87	10.08	110	136	08:20
	23.83		110	136	09:20
	20.47	11.25	115	139	09:45
	20.16		115	151	10:45
	17.94			151	11:45
	20.10			151	12:45
	20.24			151	13:45
	20.24			154	14:15
	16.70			157	15:45
	19.90			157	16:30
	16.98			175	17:00
	19.60		108	175	18:00
	19.60		105	175	19:00
	19.90		105	175	20:00
	19.90	10.08	110	175	21:00
	19.90		110	175	22:00
	19.90		110	175	23:00
1	16.73	10.08	110	178	07:00
	16.69		110	230	10:30

Remarks
ah tha night @ 122 m
igh the night @ 133 m. te 16/06/00
17/06/00

F	Water level (mbsu)	Yield (m ³ /h)	1/2 90° V-Notch (mm)	P.I.D. (mbsu)	TIME (actual)
	17.68	10	108	230	11:00
	18.68	9	105		11:30
	19.72		105		12:00
	19.61		105	230	13:00
Clean b	19.61	11.25	115	245	14:00
	19.62		115		15:00
	19.60		115		16:00
	19.63		115		17:00
Continue until	16.70	11.25	115	245	18:00
Stop airlift. Add chl				245	06:00

Remarks:

- 1. In total 81.5 hours of airlift developing took place.
- 2. In addition, development was also done by means of submersible pump. Pumping was done at various rates, de-watering a considerable section of the borehole, thus flushing residual remnants of the drill cuttings and drill chemicals. This was done on 2/7/2000.

Remark	E.C. (mS/m)	Yield (m ³ /h)	Water Level (mbsu)	Pump time (min)	TIME (actual)
Rest water l			11.45	0	13:20
			17.16	1	13:21
			16.62	2	
			16.31	3	
			16.09	4	
			15.82	5	

Remarks	
	-
	-
borehole sump	
	-
06:00 (Data 18/05/00)	
06:00. (Date 18/05/00)	_
lorine to disinfect borehole.	

KS .		
level	 	

Remark	E.C. (mS/m)	Yield (m ³ /h)	Water Level (mbsu)	Pump time (min)	TIME (actual)
			16.08	6	
			16.05	7	
	1		15.90	8	
			15.66	9	
			15.55	10	
		1.846	16.56	14	
			15.67	20	
			15.46	26	
			15.41	30	
			15.38	35	
			15.33	40	
			15.29	50	
			15.20	60	
			15.13	70	14:30
		5.1	16.34	72	
			17.17	74	
			17.36	76	
			17.33	80	
			17.31	90	14:50
		9.93	18.54	95	
		9.83	18.55	100	
		14.94	19.47	105	
		13.87	20.65	110	
		20.75	20.62	112	
			20.61	115	
			20.60	116	
		29.27	22.09	120	

KS .		

TIME (actual)	Pump time (min)	Water Level (mbsu)	Yield (m ³ /h)	E.C. (mS/m)	Remarks
	136	22.04			
	150	22.05	30.7	120.4	
16:30	180	22.06	30.25		Maximum capacity of pump.

6. Evaluation of Pumping Test

1. PUMPING TEST ANALYSIS

J3-A (WW39843) - Pumping well

J3-K (WW39842) - Observation well

1.1. Well Efficiency (Step Drawdown Test) (Annex 1)

The Well Efficiency was analysed by making use of the Rorabaugh method for step draw down data. Aquifer parameters used for the calculation of well efficiency were obtained from the evaluation results of the constant discharge test, which is discussed in **Section 1.2** below. Initial data, especially at the beginning of the test is poor, but could be ignored for the purpose of this evaluation.

The well efficiencies at the range of pumping rates used during the step drawdown test are summarised in **Table 1** below. The correlation between the pumping rates and draw down is however poor during simulation of the actual data and the correctness thereof is questioned.

Borehole number	Step	Abstraction Rate [m ³ /h]	Draw Down* [m]	Borehole Efficiency [%]	
	1	10.4	2.82	77.9	
	2	15.1	3.78	77.1	
J3-A	3	20.1	4.63	76.4	
	4	25.1	6.12	75.8	
	5	30.0	7.47	75.2	

Table 1: J3-A: Borehole efficiency at various pumping rates

* at cut-of time Δt , after which well bore storage has no affect on the well performance

Data on the linear and non-linear well losses and skin factors as well as the efficient well radius are presented in Annex 1.

1.2. Constant Discharge Test Analysis (Annex 2 - 5)

The constant discharge draw down curve of abstraction borehole **J3-A** indicates some leaky conditions induced after about **300 minutes** of pumping. For leaky aquifers, the Walton / Hantush I analysis method with draw down and recovery data was used to calculate the hydraulic conductivity of the aquifer and the aquitard (Annex 2 & 3). Using the normal Theis or Cooper-Jacob analysis results in the over estimation of the hydraulic conductivity of the leaky aquifer and an under estimation of the hydraulic conductivity of the aquitard. (Kruseman, De Ridder, 1992).

For unknown reasons the recovery of the water level in the pumping borehole J3-A was beyond the indicated rest water level prior to the test.

Aquifer storativity was estimated due to the fact that observation borehole **J3-K** is located in the Kalahari aquifer and not in the pumped Auob sandstone aquifer. During the duration of the constant discharge test no direct influence from pumping can be observed in the water level of observation borehole **J3-K**, which indicates that the Kalahari aquifer was not influenced by abstraction over the period of testing (See **Annex 5**).

The occurrence of leakage could be due to water derived from storage within the aquitard. The sandstone within the Rietmond formation is confined and under higher hydraulic pressure and will also contribute to leakage occurring into the Auob Sandstone Aquifer. The results of the constant discharge analysis are summarised in **Table 2** below.

Borehole number	Analysis Method	T [m²/day]	s [m]	k [cm/sec]	s [-]	Simulatio n model	Comments
Walton / Hantush I- recovery	194	34	6.6 x 10 ⁻³	*1 x 10 ⁻⁵			

Table 2: Aquifer Parameters calculated for J3-A; Auob

A much higher hydraulic conductivity value was calculated for this part of the aquifer in the Auob sandstone if compared with other pumping test evaluations in the Auob sandstones.

The Hantush model for leaky condition from aquitard storage was used to simulate and verify the actual data and analysis approach of the constant discharge test. Simulation parameters summarised in **Table 2** were used in simulation of the actual pumping test data (See **Annex 1.4** for simulation results).

Annex 1.5 compares the draw down results of the pumping borehole J3-A and observation borehole J3-K and it is clear that pumping from the Auob sandstone aquifer did not have any influence on the Kalahari aquifer.

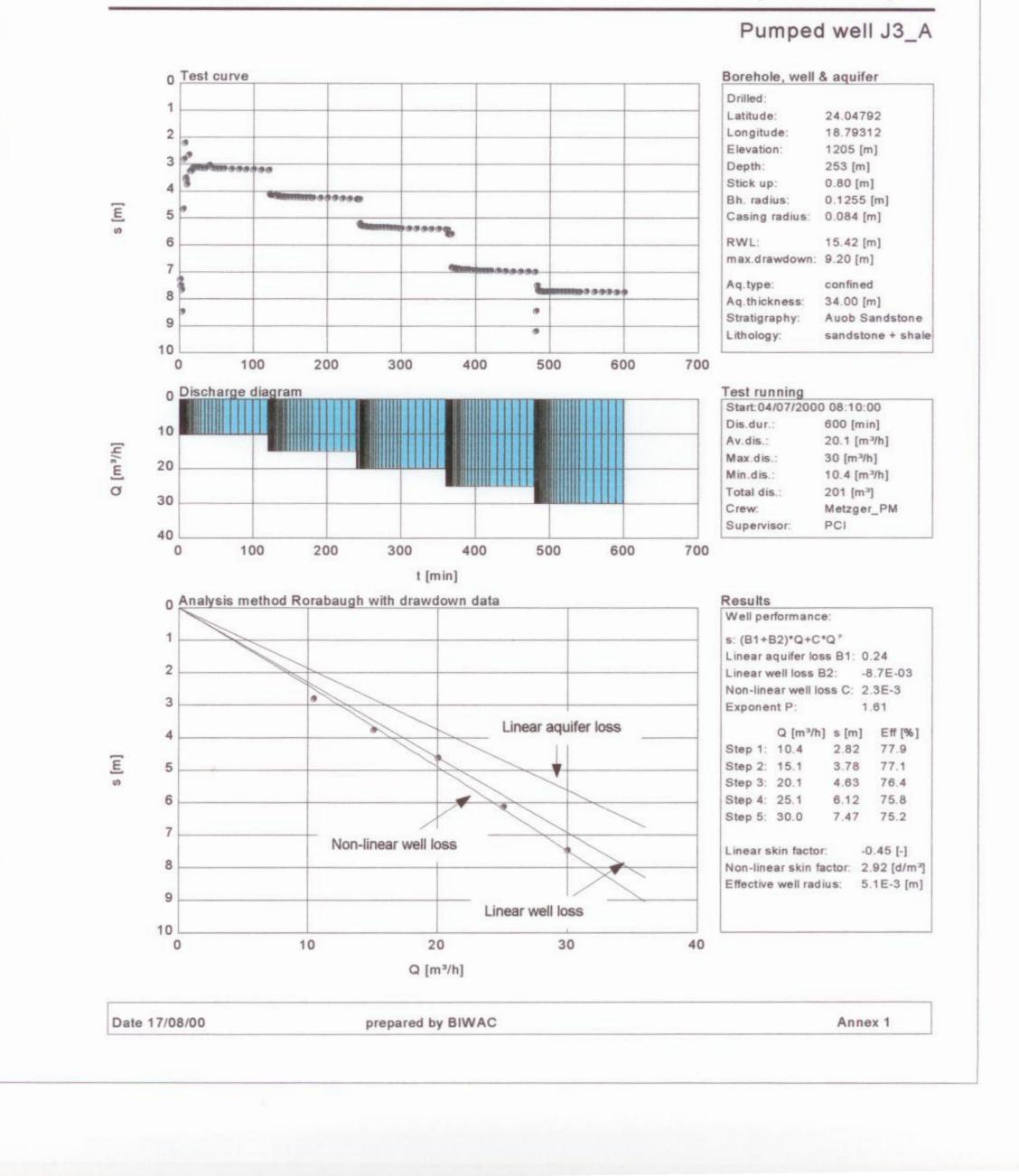
The radius of influence (R) was estimated after SICHARDT (1928) using the equation:

R = $3000 \times s \times K_f^{1/2}$ R = $3000 \times 4.5 \times 8.1 \times 10^{-3} = 109 \text{ m}$

where

R = Radius of influence

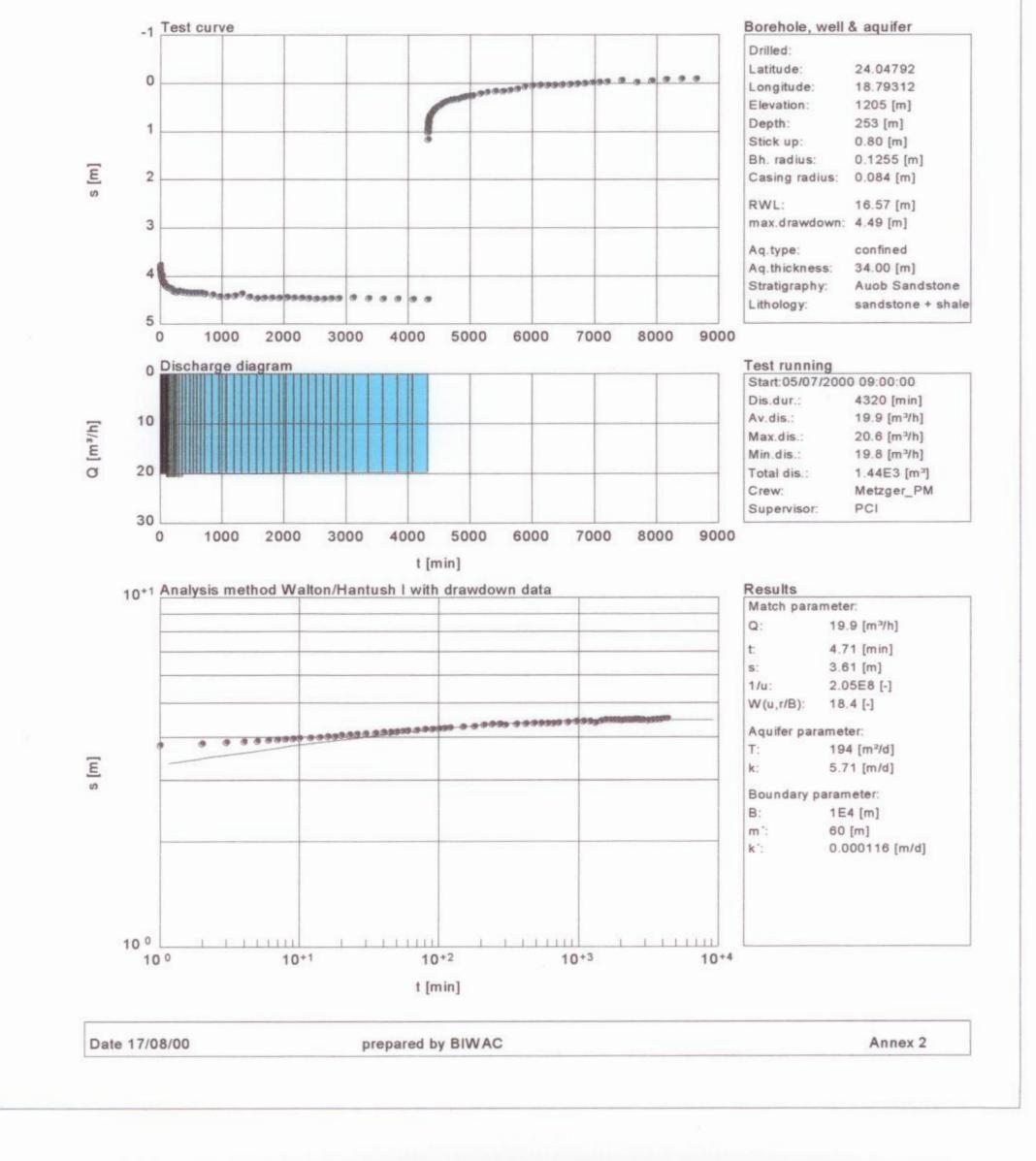
s = Draw down in abstraction borehole at end of pumping


K_f = Permeability of the aquifer

The equation is approximately correct for unconfined aquifers. In case of a confined aquifer the radius of influence most probably larger and the 109 m are considered to be the minimum value.

A proper evaluation of R (and storativity S) will only be possible once reliable data from observation wells, penetrating the same aquifer as the pumped well, are available.

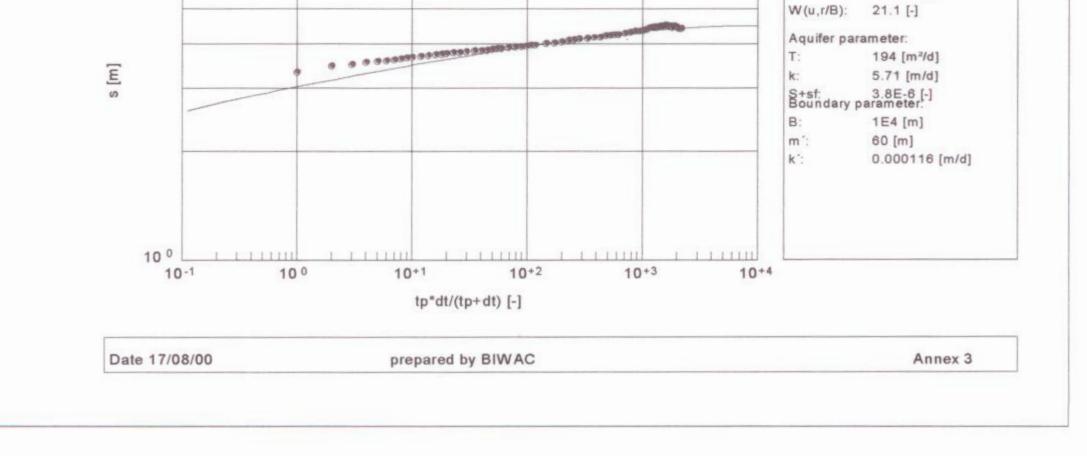
Evaluation of Test Pumping Data


Step test analysis

Evaluation of Test Pumping Data

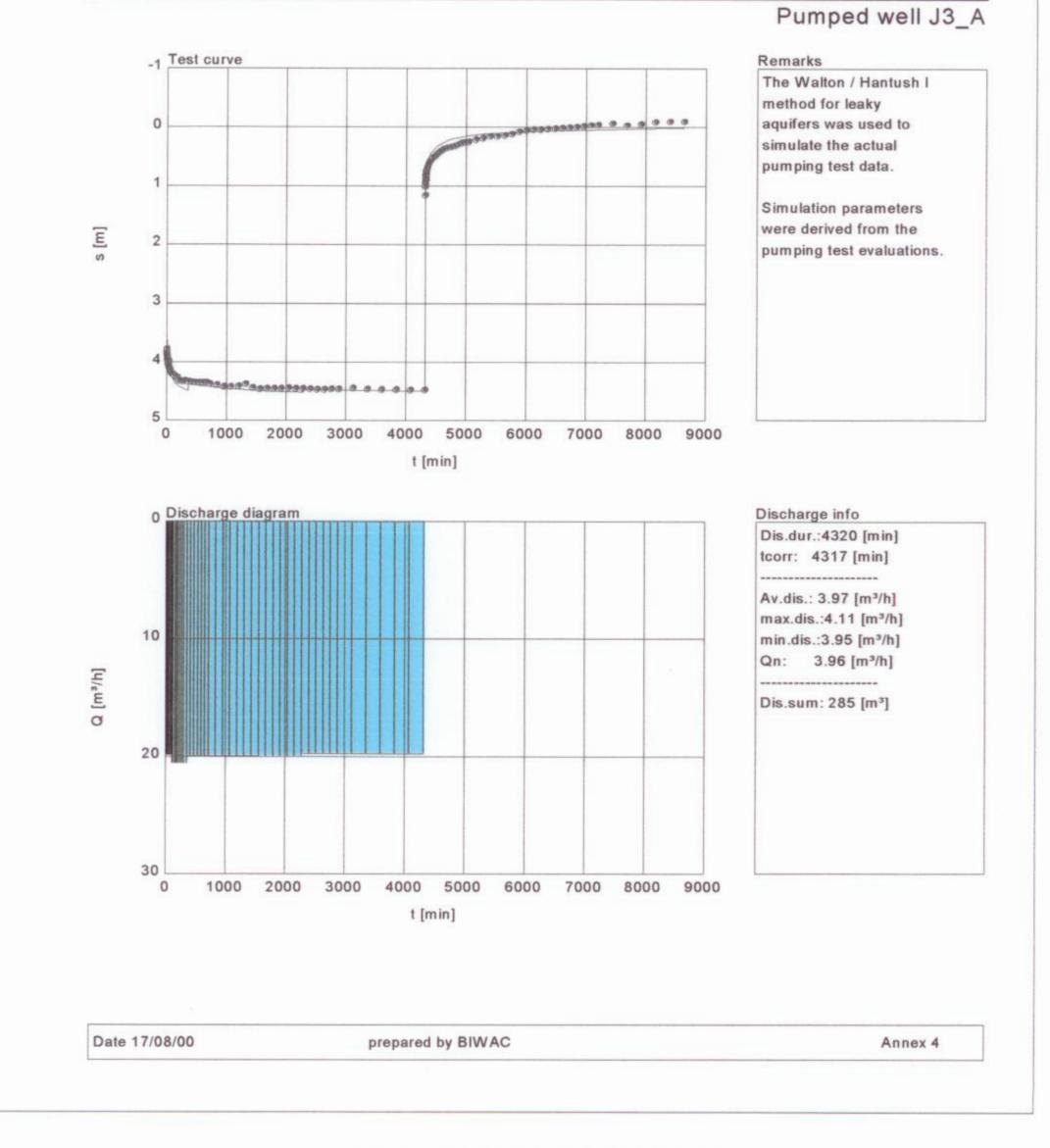
Test pumping analysis

Pumped well J3_A

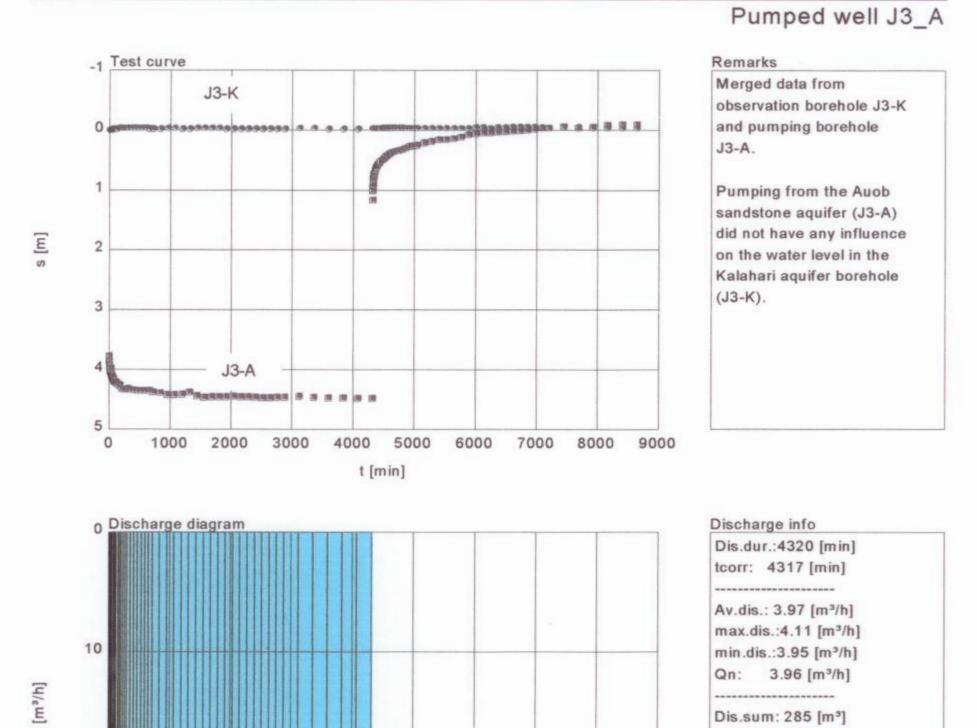


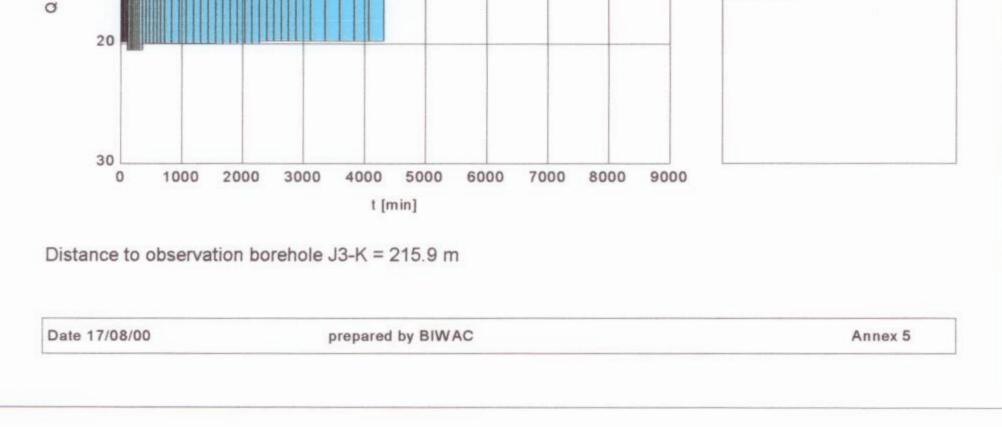
Evaluation of Test Pumping Data

Test pumping analysis


Test curve Borehole, well & aquifer -1 Drilled: Latitude: 24.04792 0 Longitude: 18.79312 Elevation: 1205 [m] Depth: 253 [m] 1 Stick up: 0.80 [m] Bh. radius: 0.1255 [m] Ξ 2 Casing radius: 0.084 [m] S RWL: 16.57 [m] 3 max.drawdown: 4.49 [m] Aq.type: confined Aq.thickness: 34.00 [m] 4 Auob Sandstone Stratigraphy: 9 9 Lithology: sandstone + shale 5 0 1000 9000 2000 3000 4000 5000 6000 7000 8000 0 Discharge diagram Test running Start:05/07/2000 09:00:00 Dis.dur.: 4320 [min] Av.dis.: 19.9 [m³/h] 10 Q [m³/h] Max.dis.: 20.6 [m3/h] Min.dis.: 19.8 [m³/h] 20 Total dis.: 1.44E3 [m³] Metzger_PM Crew: PCI Supervisor: 30 4000 5000 0 1000 2000 3000 6000 7000 8000 9000 t [min] 10+1 Analysis method Walton/Hantush I with recovery data Results Match parameter: Q: 19.9 [m³/h] t: 246 [min] S: 4.14 [m] 1/u: 2.24E9 [-]

Pumped well J3_A


Evaluation of Test Pumping Data


Test pumping diagnosis

Evaluation of Test Pumping Data

Test pumping diagnosis

7. Water Level Recorder Installation

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

INSTALLATION OF SEBA FLOATERS

JICA REFERENCE: J 3 A LOCALITY: Choroaoheib R 300

WW 39843

1.	Serial Number of floater:	4491
2.	Date installed:	6/9/00
3.	Rest Water Level when installed:	14.98 mbsu
4.	Distance from stick-up to logger:	10.0
5.	Distance from logger to water level:	4.98
6.	Cut off:	10.0 m (0.91 + 9.11)

