### STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN FOR THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN IN THE REPUBLIC OF NAMIBIA

Japan International Cooperation Agency Pacific Consultants International

#### BOREHOLE FINAL REPORT

Borehole J4-N (WW 39847) Okonyama L 330

### METZGER PM DRILLING P.O.Box 11733 Windhoek Namibia

Windhoek October 2000



## Contents per Chapter

- 1. Geological Borehole log
- 2. Penetration Record
- 3. Mud Rotary Drilling Log
- 4. Geophysical Log and Casing Design
- 5. Borehole Development Data
- 6. Evaluation of Pumping Test
- 7. Water Level Recorder Installation

# Genlogical Borchole Log

#### THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

### **GEOLOGICAL BOREHOLE LOG**

| Aminius North East           | WW 39847             |
|------------------------------|----------------------|
| Jica Reference : J - 4 - N   | S 23, 40105°         |
| Date completed : 11 May 2000 | E 19, 62621°         |
|                              | Collar elev.: 1253 m |

| Depth below | Section | Lithology                                                                                                                                                                                          | Stratigraphy      |
|-------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| surface (m) | (m)     |                                                                                                                                                                                                    |                   |
| 0 - 2       | 2       | Pale orange reddish sand, fine grained, sorted and rounded to sub-rounded                                                                                                                          |                   |
| 2 - 6,5     | 4,5     | Pale orange to yellowish fine grained sand, slightly cemented                                                                                                                                      |                   |
| 6,5 - 9,5   | 3       | Dark reddish clay rich sand: quartz grains fine<br>grained, rounded and embedded in a clayey matrix                                                                                                | KALAHARI          |
| 9,5 -12     | 2,5     | Light grey to white calcretized fine to very fine<br>sandstone                                                                                                                                     |                   |
| 12 - 14     | 2       | Light brown - pinkish fine grained calcrete cemented sandstone                                                                                                                                     |                   |
| 14 - 16     | 2       | Light grey to light pink calcrete cemented<br>conglomerate.                                                                                                                                        |                   |
| 16 - 18,5   | 2,5     | Highly weathered, calcrete cemented brownish dolerite.                                                                                                                                             |                   |
| 18,5 - 55   | 36,5    | Greenish to slightly brownish weathered and oxidized<br>dolerite. Drill-cuttings up to 15 mm. Calcareous on<br>minor fracture plains.                                                              | KAROO<br>DOLERITE |
| 55 - 57,5   | 2,5     | <b>Dolerite</b> , mostly hard, fine crystalline, dark greenish grey to black, with minor soft weathered horizons.                                                                                  |                   |
| 57,5 - 58   | 0,5     | Purplish brown sandstone baked to a quartzite,<br>oxidized on fracture plains                                                                                                                      |                   |
| 58 - 64     | 6       | Purplish fine to medium grained sandstone, glassy<br>hard at 58 & 59 m (= non-porous) but fractured. From<br>60 m downwards porous.                                                                |                   |
| 64 - 66     | 2       | Light yellowish to light grey very fine-grained<br>sandstone. Clayey matrix in drill-sample indicates thin<br>soft shale horizon                                                                   | AUOB<br>A 5       |
| 66 - 77     | 11      | Light grey to white fine to coarse grained unsorted<br>sandstone, non-calcareous, feldspathic in horizons,<br>with muscovite in places and Fe-oxide on isolated<br>quartz grains. Medium porosity. |                   |
| 77 - 83     | 6       | Light yellowish grey sandstone, fine to coarse grained<br>(unsorted), prominent Fe-oxide staining at 79 m and<br>ferrous concretions at 78 m. Coarse quartz grains sub-<br>rounded.                |                   |
| 83 - 92     | 9       | Light brown to white medium to coarse-grained<br>sandstone, carbonaceous. Porous.                                                                                                                  |                   |
| 92 - 93     | 1       | Pinkish fine-grained feldspathic sandstone, contact to dark brown to black shale.                                                                                                                  |                   |
| 93 - 94     | 1       | Mixed sample: Layers of white, red, black and dirty                                                                                                                                                |                   |

1

|             |      | brown hydrating shale.                                   |         |
|-------------|------|----------------------------------------------------------|---------|
| 94 - 95     | 1    | Mixed sample: Predominantly black and dark grey          | AUOB    |
|             |      | mudstone / shale with layers of red shale.               | A 4     |
| 95 - 96     | 1    | Mudstone / shale, grey with layers of black              |         |
| 96 - 107,5  | 11,5 | Siltstone / very fine sandstone, pale yellowish brown    |         |
|             |      | with thin reddish horizons. Calcareous at 97 & 98 m.     |         |
| 107,5 - 115 | 7,5  | Pink to very light grey / white fine to medium grained   |         |
|             |      | sandstone, occasional biotite, calcareous to 112 m.      |         |
| +           |      | Grain-size fining downwards.                             |         |
| 115 - 120   | 5    | Light brown to reddish brown, fine to medium grained     | AUOB    |
|             |      | sandstone, calcareous in places with interbedded         | A 3     |
|             |      | minor very fine sandstone.                               |         |
| 120 - 126,5 | 6,5  | Light brown to white medium grained sandstone,           |         |
|             |      | calcareous and porous.                                   |         |
| 126,5 - 130 | 3,5  | Intercalated red shale and reddish medium grained        |         |
|             |      | sandstone.                                               |         |
| 130 - 140   | 10   | Shale / siltstone, colour ranges from olive green (130 - |         |
|             |      | 133 m) to orange yellow (133 - 136 m) to a inter-        |         |
|             |      | layering of dark grey, white and red.                    |         |
| 140 - 143   | 3    | Shale and siltstone to very fine sandstone, light grey,  | AUOB    |
|             |      | non calcareous.                                          | A 2     |
| 143 - 154,5 | 11,5 | Shale / siltstone. Shale dark grey to black, reddening   |         |
|             |      | at 154 m.                                                |         |
| 154,5 - 171 | 16,5 | Reddish brown fine to medium grained sandstone with      | AUOB    |
|             |      | inter-layered minor shale horizons.                      | A1      |
| 171 - 183   | 12   | Brown to yellowish medium grained sandstone, minor       |         |
|             |      | shale. Calcareous at 177 - 181 m.                        |         |
| 183 - 187   | 4    | Light brown, changing to pale grey siltstone, with       |         |
|             |      | minor horizons of fine grained sandstone. Pale orange    |         |
| 107 107     | 0    | Fe-oxidation at 187 m in sandstone.                      |         |
| 187 - 196   | 9    | Mudstone / shale, grey with minor white clay layers      |         |
| 196 - 197   | 1    | Pale grey siltstone.                                     |         |
| 197 - 200   | 3    | Pale grey mudstone with minor black shale                |         |
| 200 - 235   | 35   | Dark grey to black carbonaceous shale and                | UPPER   |
|             |      | mudstone: hydrating.                                     | MUKOROB |
| 235 - 240   | 5    | Very fine grained sandstone with thin layer of coarse    |         |
|             |      | sandstone at 235 m and thin layers of grey and white     |         |
| 210 251     |      | shale at 235,5 m.                                        |         |
| 240 - 251   | 11   | Light grey siltstone / sandy shale, carbonaceous at      |         |
|             |      | 250 & 251 m.                                             |         |
| 251 - 257   | 6    | Light grey shale and / or intercalated mudstone.         |         |
| 257 - 260   | 3    | Fine to very fine grained light grey sandstone,          |         |
| 2(0.070     | 10   | calcareous in places.                                    |         |
| 260 - 270   | 10   | Light grey to grey shale / siltstone changing to pure    |         |
| 270 200     | 10   | shale at 270 m.                                          |         |
| 270 - 280   | 10   | Light grey shale carbonaceous at 271 m. Drop-stones      |         |
| 200 200     | 10   | at 2/1 - 2/2 m.                                          | LOWER   |
| 280 - 290   | 10   | Light grey snale, well laminated in places with drop-    | LUWER   |
| 200 207     | ~    | stones, rare but prominent at 287 m.                     | MUKOKOB |
| 290 - 297   | 1    | Grey to dark grey shale / mudstone with thin             |         |

|                  |    | sandstone at 293, pyritiferous sandy horizon at 295 m.                                                                                              | ]                     |
|------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 297 - 299        | 2  | Light grey calcareous sandstone, fine to medium grained with low porosity. Well sorted.                                                             |                       |
| 299 - 320        | 21 | Dark grey to black siltstone / shale with occasional<br>thin sandstone. Rare scattered pyrite from 310 – 320<br>m.                                  |                       |
| 320 - 329        | 9  | Massive dark grey mudstone.                                                                                                                         |                       |
| 329 - 332        | 3  | Coarse (to medium) grained light grey sandstone.<br>Grains generally well sorted and rounded. Porous.<br>Aquifer.                                   |                       |
| 332 - 335        | 3  | Fine grained sandstone and shale. Sandstone porous with abundant biotite.                                                                           |                       |
| 335 - 346        | 11 | Medium to coarse grey <b>sandstone</b> with inter-layered<br>grey <b>shale</b> . Biotite in sandstone. Shale layers more<br>frequent towards 346 m. | NOSSOB                |
| 346 - 349        | 3  | Light grey fine to medium sandstone, with light grey<br>and white laminated shale at 348 m.                                                         |                       |
| 349 - 350        | 1  | Light grey shale.                                                                                                                                   |                       |
| 350 - 351        | 1  | Fine to medium grained light grey sandstone, laminated.                                                                                             |                       |
| 351 - 354        | 3  | Fine grained to very fine grained grey sandstone /<br>mudstone with drop-stones red & orange: quartzite<br>and of granitic origin (?)               | BASEMENT<br>(DWYKA ?) |
| 354 - 356<br>EOH | 2  | Grey sandstone / grit with abundant drop-stones and pebbles, well rounded.                                                                          |                       |

### **General Comment:**

- 1. Drilling method was mud rotary, with the result that drill cuttings are extremely ground and careful washing is required before interpretation.
- The horizon below 351 m could possibly be interpreted as the top part of the Dwyka Group.

This borehole was logged by F. Bockmuhl.



# 2. Penetration Record

| Penetratio | on Record J 4 N   |
|------------|-------------------|
| Depth (m)  | Pen. Rate (min/m) |
| 1          |                   |
|            |                   |
|            |                   |
|            |                   |
|            |                   |
|            |                   |
|            |                   |
|            |                   |
|            | 2.4               |
|            | 2.5               |
| 10         | 3                 |
|            | 4.5               |
|            | 2 75              |
|            | 1.05              |
|            | C0.1              |
|            | 4                 |
|            | 3.8               |
|            | 3.3               |
|            | 27                |
|            | 2.45              |
| 20         | 2.40              |
| 20         | 2.7               |
|            | 2.8               |
|            | 2.8               |
|            | 2.7               |
|            | 3                 |
|            | 2.95              |
|            | 3                 |
|            | 3.9               |
|            | 4.5               |
|            | 4.0               |
| 20         | 4.4               |
| 50         | 4.0               |
|            | 5.25              |
|            | 4.3               |
|            | 4.5               |
|            | 5.16              |
|            | 4.85              |
|            | 5.33              |
|            | 6.25              |
|            | 4 25              |
|            | 6.16              |
| 40         | 6.10              |
| 40         | 0.5               |
|            | 6.1               |
|            | 5.33              |
|            | 5.33              |
|            | 6.3               |
|            | 9.55              |
|            | 5.33              |
|            | 5.5               |
|            | 8 16              |
|            | 10.95             |
| 50         | 10.00             |
| 50         | 10.16             |
|            | 7.5               |
|            | 9.33              |
|            | 6.5               |
|            | 9.66              |

| J4npen |  |
|--------|--|
|--------|--|

|     | 7 25  |
|-----|-------|
|     | 16    |
|     | 3 16  |
|     | 17 85 |
|     | 14 25 |
| 60  | 14.20 |
|     | 18.33 |
|     | 17.33 |
|     | 13.16 |
|     | 3.10  |
|     | 4.22  |
|     | 4.33  |
|     | 4.0   |
|     | 3.9   |
|     | 3.00  |
| 70  | 3.85  |
| 70  | 3.75  |
|     | 3.9   |
|     | 4     |
|     | 4.33  |
|     | 2.05  |
|     | 3.85  |
|     | 3.9   |
|     | 4     |
|     |       |
| 80  | 3.5   |
|     | 2.75  |
|     | 3.5   |
|     | 3     |
|     | 3 15  |
|     | 3.13  |
|     | 4.5   |
|     | 5.5   |
|     | 0.9   |
|     | 24.4  |
|     | 14.16 |
| 90  | 3.35  |
|     | 4.6   |
|     | 14.9  |
|     | 16.1  |
|     | 3.7   |
|     | 6.6   |
|     | 3.75  |
|     | 2.75  |
|     | 2.8   |
|     | 3     |
| 100 | 2 35  |
| 100 | 2.00  |
|     | 2.15  |
|     | 2.4   |
|     | 2.2   |
|     | 2.33  |
|     | 2     |
|     | 1.95  |
|     | 1.95  |
|     | 0.1   |
| 440 | 3.35  |
| 110 | 3.4   |

Page 2

|     | 2.1  |
|-----|------|
|     | 1.95 |
|     | 1.75 |
|     | 2.35 |
|     | 2    |
|     | 3.3  |
|     | 3.5  |
|     | 2.65 |
|     | 2.5  |
| 120 | 2.6  |
|     | 3.1  |
|     | 1.2  |
|     | 3    |
|     | 2.65 |
|     | 2.75 |
|     | 4.95 |
|     | 4.3  |
|     | 4.2  |
|     | 4.5  |
| 130 | 6    |
|     | 6.45 |
|     | 6.45 |
|     | 5.45 |
|     | 4.3  |
|     | 4.5  |
|     | 5.4  |
|     | 6    |
|     | 3.3  |
|     | 5.4  |
| 140 | 4.9  |
|     | 4.2  |
|     | 2    |
|     | 2.9  |
|     | 4.9  |
|     | 4.4  |
|     | 4    |
|     | 5.16 |
|     | 5.33 |
| 450 | 5.3  |
| 150 | 5.3  |
|     | 6.91 |

|     | 5.85 |
|-----|------|
|     | 5.45 |
|     | 5.25 |
|     | 3.66 |
|     | 3    |
|     | 2.1  |
|     | 2.6  |
|     | 3.25 |
| 160 | 3    |
|     | 3.3  |
|     | 3.2  |
|     | 3.2  |
|     | 2.85 |
|     | 3    |
|     | 3.3  |

Page 3

|     | 27   |
|-----|------|
|     | 2.5  |
|     | 2.03 |
| 170 | 2.75 |
| 170 | 2.1  |
|     | 2.00 |
|     | 2.3  |
|     | 2.25 |
|     | 3.1  |
|     | 3.15 |
|     | 3.8  |
|     | 3.1  |
|     | 3.4  |
|     | 3.9  |
| 180 | 2    |
|     | 2.6  |
|     | 3.8  |
|     | 3.4  |
|     | 2.33 |
|     | 2.9  |
|     | 6.26 |
|     | 2.1  |
|     | 5.1  |
|     | 2.0  |
| 100 | 3.9  |
| 190 | 4.7  |
|     | 4.9  |
|     | 3.6  |
|     | 5.4  |
|     |      |
|     | 40   |
|     | 38.7 |
|     | 36.8 |
|     | 39   |
|     | 38.9 |
| 200 |      |
|     | 2 33 |
|     | 1.85 |
|     | 1.05 |
|     | 1.05 |
|     | 1.9  |
|     | 1.9  |
|     | 2    |
|     | 3    |
|     | 1.75 |
|     | 1.4  |
| 210 | 1.7  |
|     | 1.8  |
|     | 2.1  |
|     | 1.9  |
|     | 1.6  |
|     | 1.85 |
|     | 2 16 |
|     | 2.10 |
|     | 24   |
|     | 2.4  |
| 220 | 2    |
| 220 | 2.8  |
|     | 1.9  |
|     | 1.85 |

Page 4

|     | 2.1  |
|-----|------|
|     | 2.3  |
|     | 2.16 |
|     | 1.95 |
|     | 2.1  |
|     | 2.5  |
|     | 2.25 |
| 230 | 2.5  |
|     | 2.75 |
|     | 1.75 |
|     | 1.8  |
|     | 1.7  |
|     |      |
|     | 3    |
|     | 3.1  |
|     | 3.5  |
|     | 3.33 |
| 240 | 3.6  |
| 210 | 3.66 |
|     | 3    |
|     | 37   |
|     | 3.33 |
|     | 2.7  |
|     | 3.7  |
|     | 2.5  |
|     | 2.0  |
|     | 3.4  |
| 250 | 3 33 |
| 200 | 1.55 |
|     | 3.75 |
|     | 3.75 |
|     | 5.05 |
|     | 5.55 |
|     | 5.2  |
|     | 0.00 |
|     | 5.5  |
|     | 3.45 |
| 000 | 5.85 |
| 260 | 6.5  |
|     | 6.6  |
|     | 6.35 |
|     | 6.85 |

| 4.9   |     |
|-------|-----|
| 6.7   |     |
| 4.9   |     |
| 4.6   |     |
| 4.5   |     |
| 4.85  |     |
| 6.2   | 270 |
| 11.4  |     |
| 8.05  |     |
| 7.5   |     |
| 9.55  |     |
| 7.45  |     |
| 7.1   |     |
| 15.25 |     |
| 8     |     |

|     | 8     |
|-----|-------|
| 280 | 8.2   |
|     | 7.3   |
|     | 6.75  |
|     | 7.2   |
|     | 7.1   |
|     | 5.1   |
|     | 5.1   |
|     | 4.85  |
|     | 5.75  |
|     | 4.95  |
| 290 | 4.6   |
|     | 4.65  |
|     | 74    |
|     | 5.65  |
|     | 0.00  |
|     | 5.0   |
|     | 5.9   |
|     | 5.1   |
|     | 6     |
|     | 17.55 |
|     | 6.2   |
| 300 | 6.1   |
|     | 6.3   |
|     | 6.6   |
|     | 7.3   |
|     | 5.75  |
|     | 5.3   |
|     | 6.05  |
|     | 5.6   |
|     | 5.8   |
|     | 6.25  |
| 310 | 5.85  |
|     | 5.75  |
|     | 5 75  |
|     | 61    |
|     | 5.8   |
|     | 5.85  |
|     | 5.00  |
|     | 0.9   |
|     | 0.1   |
|     | 6 75  |
| 200 | 5.75  |
| 320 | 6     |
|     | 5     |
|     | 4.7   |
|     | 4.2   |
|     | 5     |
|     | 3.9   |
|     | 4.85  |
|     | 4.6   |
|     | 4.85  |
| 330 | 3.7   |
|     | 5.1   |
|     | 3.6   |
|     | 2.0   |
|     | 2.5   |

Page 6

|     | 2.4   |
|-----|-------|
|     | 2.15  |
|     | 2.25  |
|     | 3.15  |
|     | 3     |
| 340 | 2.75  |
|     | 2.35  |
|     | 2.35  |
|     | 2.33  |
|     | 2.3   |
|     | 2.2   |
|     | 4.1   |
|     | 5.2   |
|     | 4.3   |
|     | 3.1   |
| 350 | 2.2   |
|     | 2.25  |
|     | 10.16 |
|     | 9.3   |
|     | 9.5   |
|     | 18.25 |
|     | 7.8   |
| 357 | 8.3   |

Page 7

#### Penetration Record J 4 N



Chart1

# **3. Mud Rotary Drilling Log**



### THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

### **MUD ROTARY DRILLING LOG**

JICA REFERENCE: J4N LOCALITY: Aminius WW 39847 DATE: 26 April to 07 May 2000

| TIME             | DEPTH<br>mbgl | MARSH<br>FUNNEL<br>TEST 1000 ml<br>(sec) | MARSH<br>FUNNEL<br>TEST 500 ml<br>(sec) | E. C.<br>mS/cm | DENSITY | рН      | TEMPERATURE<br>° C | COMMENT                                               |
|------------------|---------------|------------------------------------------|-----------------------------------------|----------------|---------|---------|--------------------|-------------------------------------------------------|
| 14:03<br>(26/04) | 6             | 32                                       |                                         |                |         |         |                    |                                                       |
| 16:10            | 11            | 30                                       |                                         | 2.8            |         |         |                    |                                                       |
| 18:00            | 31            | 30                                       |                                         | 2.72           |         |         |                    |                                                       |
| (27/04)          | 59            | 32<br>29                                 |                                         | 2.42<br>2.71   |         |         | 28.7<br>23.9       | Start of geophysical logging<br>Water used for mixing |
| 12:45<br>(1/5)   | 205           | 32                                       |                                         | 2.8            |         |         | 28.2               |                                                       |
| 15:00            | 235           | 33<br>29                                 |                                         | 2.85<br>2.7    |         |         | 27.8<br>22.8       | Start of geophysical logging<br>Water used for mixing |
| 10:00<br>(06/05) | 265           | 30                                       | 20                                      | 2.8            |         | 10      | 29.5               |                                                       |
| 18:20            | 303           |                                          |                                         |                |         |         |                    |                                                       |
| 08:00<br>(07/05) | 304           | 29                                       | 19                                      | 2.83           |         | 10      | 23.9               |                                                       |
| 09:00            | 310           | 30                                       | 20                                      | 2.8            |         | 10      | 23.9               | 25 kg Cap 21 added                                    |
| 18:00            | 357           | 31<br>72                                 | 20                                      | 2.8<br>2.8     |         | 10<br>8 | 24.2<br>19         | Before geoph. Logging<br>Water from tanker            |

1

#### **GENERAL REMARKS:**

- 1. Geophysical logging was done in three steps: At diamater 12 1/4" to a depth of 59 m, followed at diameter 9 7/8" to a depth of 235 m and finally at  $\phi$  7 7/8" to the end of the borehole at depth 357 m.
- 2. Parameters for the samples were obtained from samples filtered through a fine sieve.
- 3. To obtain the electrical resistivity for the samples in  $\Omega$ -m., the E.C., as S/m., should be inversed (1/x).

# 4. Geophysical Log and Casing Design



| Pose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | idon Geophysics<br>(Poy. No. 53/550)                                                                                                    |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| СО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NSULTANT PACIFIC CONSULTANTS INTERNATIONAL                                                                                              |  |  |  |  |  |
| CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MPANY METZGER PM DRILLING                                                                                                               |  |  |  |  |  |
| PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>DJECT</b> The Study on the Groundwater Potential Evaluation and Management Plan in the Southeast Kalahari (Stampriet) Artesian Basin |  |  |  |  |  |
| <ul> <li>D. Poseidon Geophysics</li> <li>ELL.J4N WW 39847</li> <li>ELL.J4N WW 39847</li> <li>ROJ.</li> <li>N. Aminuis</li> <li>C. J 4</li> <li>LING No. J4N</li> <li>AMARKAN</li> <li>AMARKAN<td>CATION AMINUIS</td></li></ul> | CATION AMINUIS                                                                                                                          |  |  |  |  |  |
| O ≥ E I E E<br>BH COORDINATES S:<br>E 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23.40105<br>19.62621                                                                                                                    |  |  |  |  |  |
| COLLAR ELEVATION 12<br>LOG MEAS. FROM Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53m<br>flevel                                                                                                                           |  |  |  |  |  |
| DRILLING MEAS. FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Groundlevel                                                                                                                             |  |  |  |  |  |
| DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08 May 2000                                                                                                                             |  |  |  |  |  |
| TYPE LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Physical Properties                                                                                                                     |  |  |  |  |  |
| DEPTH-DRILLER 356m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                         |  |  |  |  |  |
| DEPTH-LOGGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 347.50m                                                                                                                                 |  |  |  |  |  |
| 3TM LOGGED INTERVAL 347.50m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                         |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                         |  |  |  |  |  |
| PERMANENT DATUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Groundlevel                                                                                                                             |  |  |  |  |  |
| RECORDED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Clemence Kambewu                                                                                                                        |  |  |  |  |  |
| WITNESSED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JICA JAPAN<br>INTERNATIONAL<br>COOPERATION                                                                                              |  |  |  |  |  |



| AMDSTONE       XXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | XXXX         XXXX           XXXXX         XXXXX           XXXXX         XXXXX           XXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SANDSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Viewershield and the second and the  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| many when you and the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 185.0<br>190.0<br>195.0<br>200.0<br>210.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>215.0<br>21 | 235.0     135.0       240.0     140.0       245.0     140.0       250.0     140.0       255.0     140.0       255.0     140.0       260.0     140.0       270.0     140.0       290.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0     140.0       215.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 330.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | And and a second and a second and a second a sec | here have been and the second |



# 5. Borehole Development Data



# THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

### **BOREHOLE DEVELOPMENT DATA**

JICA REFERENCE: J 4 N LOCALITY: Okonyama, Aminius NE WW 39847 DA

| TIME<br>(actual) | P.I.D.<br>(mbsu) | ½ 90° V-<br>Notch<br>(mm) | Yield<br>(m <sup>3</sup> /h) | E.C.<br>(mS/m) | Water Level<br>(mbsu) | Remarks                            |
|------------------|------------------|---------------------------|------------------------------|----------------|-----------------------|------------------------------------|
| 19:00            | 240              |                           |                              |                |                       | Date 12/05/2000                    |
| 20:00            |                  | 90                        | 6.12                         |                | 23.00                 |                                    |
| 20:30            |                  | 105                       | 9                            |                | 23.3                  |                                    |
| 22:00            |                  | 95                        | 7                            |                | 23.4                  | Water still full of drilling fluid |
| 04:00            |                  | 96                        |                              |                | 22.5                  | Date 13/05/2000                    |
| 08:00            | 240              | 102                       |                              |                | 36.7                  | Water milky                        |
| 10:00            |                  | 105                       | 9                            |                | 43.2                  |                                    |
| 11:00            |                  | 100                       | 7.92                         |                | 44.7                  |                                    |
| 12:00            |                  | 100                       |                              |                | 44.6                  |                                    |
| 13:00            |                  | 98                        |                              |                | 44.7                  | Water milky                        |
| 13:30            |                  |                           |                              |                |                       | Allow RWL to recover until 13:45   |
| 13:45            |                  |                           |                              |                | 18.1                  |                                    |
| 14:00            |                  | 105                       | 9                            |                | 43.7                  | Allow to recover to 15:00          |
| 15:00            |                  |                           |                              |                | 10.8                  |                                    |
| 16:00            |                  | 97                        |                              |                | 42.7                  |                                    |
| 17:00            |                  | 94                        | 7                            |                | 42.8                  |                                    |
| 18:00            |                  | 106                       |                              |                | 43.13                 | Water very milky                   |
| 19:00            |                  | 107                       | 9.5                          |                | 43.15                 |                                    |
| 20:00            |                  | 104                       |                              |                | 43.14                 |                                    |
| 21:00            |                  | 104                       |                              |                | 43.27                 |                                    |

1

### WW 39847 DATE: 12/05/2000 (starting)

| TIME<br>(actual) | P.I.D.<br>(mbsu) | ½ 90° V-<br>Notch<br>(mm) | Yield<br>(m <sup>3</sup> /h) | E.C.<br>(mS/m) | Water Level<br>(mbsu) |                    |
|------------------|------------------|---------------------------|------------------------------|----------------|-----------------------|--------------------|
| 04:00            | 240              | 103                       |                              |                | 42.34                 | Da                 |
| 05:00            |                  | 106                       |                              |                | 42.13                 |                    |
| 06:00            |                  | 108                       |                              |                | 43.18                 |                    |
| 07:00            |                  | 104                       |                              |                | 43.21                 |                    |
| 08:00            |                  | 106                       | 9                            |                | 43.18                 |                    |
| 09:00            | 240              | 104                       |                              |                | 43.26                 | 1                  |
| 11:00            | 350              |                           |                              |                | 11.3                  |                    |
| 12:00            |                  | 110                       | 10.08                        |                | 36.3                  |                    |
| 13:00            |                  | 91                        | 6.2                          |                | 35.9                  |                    |
| 14:00            |                  | 72                        |                              |                | 36.6                  |                    |
| 15:00            |                  | 88                        |                              |                | 35.1                  |                    |
| 16:00            |                  | 104                       |                              |                | 36.41                 |                    |
| 17:00            |                  | 103                       |                              |                | 37.23                 |                    |
| 18:00            |                  | 104                       |                              |                | 37.51                 |                    |
| 19:00            |                  | 102                       |                              |                | 37.53                 |                    |
| 20:00            |                  | 103                       | 8.5                          |                | 38.63                 |                    |
| 21:00            |                  | 103                       |                              |                | 38.37                 |                    |
| 03:00            |                  | 100                       | 7.92                         |                | 45.2                  | Da                 |
| 07:00            | 350              | 103                       |                              |                | 46.83                 | Stop airlift. Obse |
| 13:00            |                  |                           |                              |                | 10.17                 |                    |
| 07:00            |                  |                           |                              |                | 10.45                 | D                  |

### **Remarks:**

- 1. Airlift development was done on 12/05/2000 from 19:00 to 24:00 for a total of 5 hours.
- 2. On 13/05/2000 a total of 21 hours was continuously used for airlifting.

| Remarks                    |
|----------------------------|
| te 14/05/2000              |
|                            |
|                            |
| Vater milky.               |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
| te 15/05/2000              |
| ve recovery. Remove pipes. |
| ate 16/05/00.              |
|                            |

- 3. On 14/05/2000 another 21 hours of development by airlift was done.
- 4. Finally on 15/05/2000 airlifting was continued from 24:00 to 07:00 for continuous 7 hours.
- 5. This borehole was initially also developed by cable tool rig by means of bailing and plunging resulting in a regular surging through the screens.

# 6. Evaluation of Pumping Test



#### 1. PUMPING TEST ANALYSIS

J4-N (WW39847) - Pumping well

J4-A (WW39846)- Observation well

J4-K (WW39845)- Observation well

#### 1.1. Well Efficiency (Step draw down test) (Annex 1)

Well Efficiency was analysed by making use of the Jacob method for draw down data. Aquifer parameters used for the calculation of well efficiency were obtained from the evaluation results of the constant discharge test, which is discussed in **Section 1.2** below.

The well efficiencies at the range of pumping rates used during the step draw down test are summarised in **Table 1** below. Only four of the five steps were utilised for the evaluation of the borehole efficiency.

| Borehole<br>number | Step | Abstraction Rate<br>[m <sup>3</sup> /h] | Draw Down*<br>[m] | Borehole Efficiency<br>[%] |
|--------------------|------|-----------------------------------------|-------------------|----------------------------|
|                    | 1    | 5                                       | 12.0              | 79.7                       |
| L4 N               | 2    | 10                                      | 22.0              | 79.1                       |
| J4-IN              | 3    | 15                                      | 29.7              | 78.5                       |
|                    | 4    | 20                                      | 50.6              | 77.9                       |

Table 1: J4-N; Borehole efficiency at various pumping rates

\* at cut-off time \Deltat, after which well bore storage has no affect on the well performance

Data on the linear and non-linear well losses and skin factors as well as the efficient well radius are presented in Annex 1.

#### 1.2. Constant Discharge Test Analysis (Annex 2 - 6)

The constant discharge draw down curve of abstraction borehole **J4-N** indicates leakage. For leaky aquifers, the Walton Hantush analysis method with draw down and recovery data was once again used to calculate the hydraulic conductivity of the aquifer and the aquitard **(Annex 2 & 3)**.

Aquifer storativity was once again estimated due to the fact that the observation boreholes **J4-A** and **J4-K** are located in the Auob sandstone and Kalahari sediments respectively. During the duration of the constant discharge test, only a minor drop in the water level of the two observation boreholes at late times are observed. This scenario could be due to leakage caused by pressure release in the underlying Nossob confined aquifer or due to natural oscillations in the groundwater table (See Annex 5).

The occurrence of leakage into the Nossob aquifer during abstraction could be due to water derived from storage within the overlying aquitard. The results of the constant discharge analysis are summarised in **Table 2** below.

1

| Borehole<br>number | Analysis<br>Method                | Analysis<br>Method [m <sup>2</sup> /day] | s k<br>[m] [cm/sec] | k                      | S                     | Simulation | Commente                                                                                          |
|--------------------|-----------------------------------|------------------------------------------|---------------------|------------------------|-----------------------|------------|---------------------------------------------------------------------------------------------------|
|                    |                                   |                                          |                     | [-]                    | model                 | Comments   |                                                                                                   |
| J4-N               | Walton-<br>Hantush -<br>draw down | 7.01                                     | 50                  | 1,6 x 10 <sup>-4</sup> | *5 x 10 <sup>-5</sup> | Hantush    | *Storativity<br>estimated -<br>Observation<br>borehole not<br>located in<br>the tested<br>aquifer |
|                    | Walton-<br>Hantush -<br>recovery  | 7.60                                     | 50                  | 1,8 x 10 <sup>-4</sup> | *5 x 10 <sup>-5</sup> |            |                                                                                                   |

Table 2: Aquifer Parameters calculated for J4-N; Nossob sandstone

The Hantush model for leaky condition from aquitard storage was used to simulate and verify the actual data and analysis approach of the constant discharge test. Simulation parameters summarised in **Table 2** were used in simulation of the actual pumping test data (See **Annex 4** for simulation results).

Annex 6 compares the draw down results of the pumping borehole J4-N and observation boreholes J4-A and J4-K and it is clear that pumping from the Nossob sandstone did not have much of an influence on the Auob sandstone and Kalahari aquifers.

The radius of influence (R) was estimated after SICHARDT (1928) using the equation:

 $R = 3000 \times s \times K_f^{1/2}$ 

 $R = 3000 \times 55.3 \times 1.3 \times 10^{-3} = 223 m$ 

where

R = Radius of influence

s = Draw down in abstraction borehole at end of pumping

K<sub>f</sub> = Permeability of the aquifer

The equation is approximately correct for unconfined aquifers. In case of a confined aquifer the radius of influence most probably larger and the 223 m are considered to be the minimum value.

A proper evaluation of R (and storativity S) will only be possible once reliable data from observation wells, penetrating the same aquifer as the pumped well, are available.



### Groundwater Study in the Stampriet Artesian Basin

**Evaluation of Test Pumping Data** 

### Step test analysis















# 7. Water Level Recorder Installation



### THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

### **INSTALLATION OF SEBA FLOATERS**

### JICA REFERENCE: J 4 N LOCALITY: Okonyama, Aminuis

WW 39847

| 1. | Serial Number of floater:            | 4493                |
|----|--------------------------------------|---------------------|
| 2. | Date installed:                      | 18/09/00            |
| 3. | Rest Water Level when installed:     | 7.48 mbsu           |
| 4. | Distance from stick-up to logger:    | 5.0 m               |
| 5. | Distance from logger to water level: | 2.48 m              |
| 6. | Cut off:                             | 5.0 m (0.91 + 4.11) |

