STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN FOR THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN IN THE REPUBLIC OF NAMIBIA

Japan International Cooperation Agency Pacific Consultants International

BOREHOLE FINAL REPORT

Borehole J7-K (WW 39852) Jakkalsdraai R 228

METZGER PM DRILLING

P.O.Box 11733 Windhoek Namibia

> Windhoek October 2000

Contents per Chapter

- 1. Geological Borehole log
- 2. Penetration Record
- 3. Mud Rotary Drilling Log
- 4. Geophysical Log and Casing Design
- 5. Borehole Development Data
- 6. Evaluation of Pumping Test
- 7. Water Level Recorder Installation

1. Geological Borehole Log

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

GEOLOGICAL BOREHOLE LOG

Farm Jakkalsdraai	WW 39852
Jica Reference: J 7 K	S 25. 29149 °
Date completed: 5 August 2000	E 18. 41784 °
	Collar elev.: 1144 mamsl

Depth below surface (m)	Section (m)	Lithology	Stratigraphy
0 - 7	7	Calcrete: light brownish grey, slightly karsted near surface.	
7 -15	8	Calcretized gravel and conglomerate. Calcrete matrix white to light grey.	
15 - 25	10	Light brownish grey calcretized sand with horizons of gravelly calcretized conglomerate.	
25 - 26	1	Pinkish massive calcrete.	
26 - 29	3	Pinkish unsorted sandstone. Scattered quartz granules. Calcareous & porous. Aquifer.	KALAHARI
29 - 32	3	Pale grey to pale brownish conglomerate, calcrete cemented.	
32 - 36	4	Grey poorly sorted partially consolidated sandstone/conglomerate. Calcareous. Granules and pebbles well rounded. Porous. Aquifer.	
36 - 44	8	Unsorted sandstone, non-calcareous to moderately calcareous in places and slightly porous. Silcrete horizons. Colour pale reddish brown.	
44 - 48	4	Pinkish calcrete conglomerate.	
48 – 55 EOH	7	Pale yellowish well laminated sandstone, micaceous, with interlayered yellowish shale horizons. Shale RIETM increases towards 55 m.	

Remarks:

1. This borehole was drilled by the air-rotary method. Drill-additives consisted only of rotafoam.

1

2. Penetration Record

j7kpen

	Penetration Record Borehole J 7 K WW 39852							
Depth (m)	Pen. Rate (min/m)	Time	Date	Remarks				
0		08:00	3/8/00	Drilling for conductor pipe				
				Drining for conductor pipe				
				Drilling 311 mm				
	3.6							
5								
	2.5	09:20						
	1.4							
10	1.35	09:37						
	1.35							
	2							
	1.4							
	1.7							
	2.1							
	2.4							
	1.5							
	0.95							
	1.15							
20	2.25							
20	1 45							
	21							
	2 15							
	1.6							
	21							
	2.1							
	2.75							
	1.45							
	3 25							
30	3.5							
50	3.8							
	21				1			
	2.05							
	2.00							
	1.45							
	1.45							
	3.1							
	2.45							
	2.45							
40	2.13							
40	2.2							
	3.05							
	2 35							
	2.00							
	2.2							
	2.5							
	1.95							
	2.7							
	2.1							
50	1.45							
50	1.40							
	1.5							
	1.5							

Sheet1

Page 1

j7kpen

	1.4				
	1.15				
55	1.6	12:10	3/8/00	End of Borehole	

j7kpen

Penetration Record J 7 K

$\begin{array}{c} 41 \\ 43 \\ 45 \\ 47 \\ 49 \\ 51 \\ 53 \\ 55 \\ 55 \\ 55 \\ 55 \\ \end{array}$

3. Mud Rotary Drilling Log

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

MUD ROTARY DRILLING LOG

JICA REFERENCE: J 7 K LOCALITY: Jakkalsdraai R 228 WW 39852

<u>Important remark</u>: This borehole was drilled by the air-rotary method, without any re-circulating drilling fluid. The measurements recorded below are at the end of drilling, before logging, and represent the water inside the borehole while logging was taking place.

1

TIME	DEPTH mbgl	MARSH FUNNEL TEST 1000 ml	MARSH FUNNEL TEST 500 ml	E. C. µS/cm	DENSITY	рН	TEMPERATURE ° C	
10:15	55	34	18	1165	<1.16		24.3	

WW 39852 DATE: 3/08/2000

COMMENT

See above.

4. Geophysical Log and Casing Design

P05	eiden Geophysics (Peg. No. 93550)
	CONSULTANT PACIFIC CONSULTANTS INTERNATIONAL
	COMPANY METZGER PM DRILLING
	PROJECT The Study on the Groundwater Potential Evaluation and Management Plan in the Southeast Kalahari (Stampriet) Artesian Basin
23	WELL ID J7K WW39852
Poseidon Geophysic J7K WW 39852 Jakkalsdraai J 7 J No. J7K	LOCATION JAKKALSDRAAI
CO. WELL PROJ. LCN. STE. FILIN	COUNTRY REPUBLIC OF NAMIBIA
BH COORDINATES	
COLLAR ELEVATION LOG MEAS. FROM C	froundlevel
DRILLING MEAS. FRO	M Groundlevel
DATE TYPE LOG	Physical Properties
DEPTH-DRILLER	55m
DEPTH-LOGGER	56m
BTM LOGGED INTERV	/AL 56m
TOP LOGGED INTERV	AL 0.60m
PERMANENT DATUM	Groundlevel
KECOKDED BY	Wimple Coetzer
WIINESSED BI	JICA JAPAN INTERNATIONAL COOPERATION AGENCY

5. Borehole Development Data

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

BOREHOLE DEVELOPMENT DATA

JICA REFERENCE: J 7 K LOCALITY: Jakkalsdraai R 228 WW 39852 DAT

	Water Level (mbsu)	E.C. (mS/m)	Yield (m³/h)	¹ / ₂ 90° V- Notch (mm)	P.I.D. (mbsu)	TIME (actual)
Date 6/8/0	10.20					12:00
5 hours plunging. In wh						17:00
Date 7/8/00. Plungin gravel pr						08:00
	10.20	129				17:00
Γ						08:00
Plung	10.20	122				15:00
Bailing. 80 bailers			1.4			17:00
Date						08:00
End of develo	10.0					15:00
Date 10/08/00:	25.40	109	4.0	75	29	09:00
	25.40		3.24	70		12:00
	26.45	104	2.16	60	41	16:00
Pump t	26.66		2.16	60	41	19:00
Date 11/0						07:00
	25.40	123	10.08	110	53	09:00
	25.50		12.6	120		12:00
	25.70		12.6	120		16:00

DATE: 6/08/2000 (starting)

Remarks
00: Cable Tool Data.
troduce chlorine into borehole
nile plunging.
ng for 9 hours in order to settle
roperly in borehole.
Date 8/8/00.
ging for 8 hours.
@ 35 l removed for a total of
28001.
9/8/00. Bailing.
opment by cable tool rig.
: Development by airlift.
through the night.
8/00. Add two pipes

	Water Level (mbsu)	E.C. (mS/m)	Yield (m ³ /h)	½ 90° V- Notch (mm)	P.I.D. (mbsu)	TIME (actual)
Pump	25.50		12.6	120	53	19:00
D	25.33	104	9.2	106	53	08:00
	25.70		9.5	107		12:00
	25.30		9	105	53	16:00

Remarks:

- 1. This borehole was bailed and plunged for 30 hours.
- 2. Development by airlift took place for effective 52 hours.
- 3. Finally this borehole was developed by means of pumping with an electrical submersible pump. Data for these 3 hours is tabulated below. Date for this activity was 20/08/2000.

TIME (actual)	Pump time (min)	Water Level (mbsu)	Yield (m ³ /h)	E.C. (mS/m)]
12.41	0	10.53			Before the
12.42	1	20.42			
	2	16.59			
	3	14.88			
	4	16.53			
	5	16.58			
	6	16.60			
	7	16.60	5.35		
	8	16.16			
	9	16.66			
	10	16.68			

Remarks

through the night. Date 12/08/00.

Remarks start of developing. Start

TIME (actual)	Pump time (min)	Water Level (mbsu)	Yield (m ³ /h)	E.C. (mS/m)	1
	12	16.74			
	14	16.77		234	
	16	16.80			
	18	16.87			
	20	16.89			
	23	16.92			
	26	16.96			
	30	16.94			
	35	16.99			
	40	17.03			
	45	17.04			
	50	17.04			
	55	17.06	5.35	164	
13:41	60	17.08			
	61	21.39			
	62	21.10			
	63	22.08			
	64	22.48			
	65	22.77			
	66	23.02			
	67	23.22			
	68	23.41			
	69	23.52			
	70	23.63	10		
	72	23.82			
	74	23.95			
	76	24.04			
	the second se				

Remarks

TIME (actual)	Pump time (min)	Water Level (mbsu)	Yield (m ³ /h)	E.C. (mS/m)	ł
	78	24.15	10.14		
	80	24.22			
	83	24.28			
	86	24.35			
	90	24.41			
	95	24.46			
	100	24.53			
	105	24.58			
	110	24.56			
	115	24.70		109	
14:41	120	24.73			
	121	29.04			
	122	29.15			
	123	29.18			
	124	29.60			
	125	29.95			
	126	30.49	15.15		
	127	31.64			
	128	32.23			
	129	32.60			
	130	32.79			
	132	33.08			
	134	33.19			
	136	33.42			
	138	33.53	15.2		
	140	33.65			
	143	33.77			

Remarks

TIME (actual)	Pump time (min)	Water Level (mbsu)	Yield (m ³ /h)	E.C. (mS/m)	Remarks
	146	33.92			
	150	34.09			
	155	34.12			
	160	34.19			
	165	34.25			
	170	34.22			
	175	34.25		106	
15:41	180	34.47			
	181	40.48			
	182	42.10	19.51		Stop because of venturi effect: Pump inlet depth at 46 m.
15:44		24.88			Start Recovery measurements
16:43		11.15			

6. Evaluation of Pumping Test

1. PUMPING TEST ANALYSIS

J7-K (WW39852) - Pumping well

J7-N (WW39853) - Observation well

J7-Huis - Observation well

J7-Wind – Observation well

1.1. Well Efficiency (Step Drawdown Test) (Annex 1)

Well Efficiency was analysed by making use of the Jacob method for draw down data. Aquifer parameters used for the calculation of well efficiency were obtained from the evaluation results of the constant discharge test, which is discussed in **Section 1.2** below.

The well efficiencies at the range of pumping rates used during the step drawdown test are summarised in **Table 1** below.

Borehole number	Step	Abstraction Rate [m ³ /h]	Draw Down* [m]	Borehole Efficiency [%]
	1	1.0	6.24	59.1
	2	2.1	12.40	56.7
J7-K	3	3.0	19.30	54.9
	4	4.0	26.50	53.0
	5	5.1	35.80	51.1

Table 1: J6-K: Borehole efficiency at various pumping rates

* at cut-off time Δt , after which well bore storage has no affect on the well performance

Data on the linear and non-linear well losses and skin factors as well as the efficient well radius are presented in Annex 1.

1.2. Constant Discharge Test Analysis (Annex 2 - 5)

The abstraction rate of the constant discharge test was 7 m³/h. The constant discharge draw down curve of abstraction borehole **J7-K** indicates leaky conditions. For leaky aquifers, the Walton / Hantush I analysis method with draw down and recovery data was used to calculate the hydraulic conductivity of the aquifer and the aquitard as well as the leakage factor B **(Annex 2 & 3)**. Using the normal Theis or Cooper-Jacob analysis will result in the over estimation of the hydraulic conductivity of the leaky aquifer and an under estimation of the hydraulic conductivity of the aquitard. (Kruseman, De Ridder, 1992).

The occurrence of leakage could be due to water derived from storage within the aquitard. The sandstone within the Rietmond Formation is confined and under higher hydraulic pressure and will also contribute to leakage occurring into the upper Kalahari aquifer. The results of the constant discharge analysis are summarised in **Table 2** below.

1

During the duration of the constant discharge test, a slight rise in the water level of observation borehole J7-N was observed, while the water level of J7-Wind fluctuated due to the borehole being pumped for water supply to the farm house (See Annex 5.1).

The water level of J7-Huis was clearly affected by the abstraction from J7-K. The observation borehole is located at a distance of 230 m and a maximum draw down of 0.6 m was observed after 72 hours pumping (See Annex 5.2). The draw down curve was analysed for transmissivity and storativity values. The transmissivity was calculated as T = 68 m²/day, while the storativity was calculated as S = 0.00023, which is a typical value for confined and leaky aquifers. The transmissivity is double the transmissivity calculated for the pumping borehole J7-K. However, the draw down curve is also affected by pumping of J7-K, which is about 150 m away. The draw down curve is therefore rather 'bumpy' (See Annex 3.1). This must be born in mind when utilising the calculated aquifer parameter obtained from observation borehole J7-Huis.

Borehole number	Analysis method	т	s	k	S	Comments	
	Analysis method	[m²/day]	[m]	[cm/sec]	[-]	Comments	
J7-K	Walton / Hantush I - draw down	30	30	1.2 x 10 ⁻³	*5 x 10 ⁻³	*Storativity estimated	
	Walton / Hantush I - recovery	32	30	1.2 x 10 ⁻³	*5 x 10 ⁻³	Storativity estimated	
	Walton / Hantush I - draw down from observation borehole J7-Huis	68	30	2.6 x 10 ⁻³	2 x 10 ⁻⁴	Storativity calculated	

Table 2: Aquifer Parameters calculated for J7-K; Kalahari

The Walton / Hantush I model for leaky condition from aquitard storage was used to simulate and verify the actual data and analysis approach of the constant discharge test. Simulation parameters summarised in Table 2 were used in simulation of the actual pumping test data (See Annex 4 for simulation results).

The radius of influence (R) was estimated after SICHARDT (1928) using the equation:

 $R = 3000 \times s \times K_f^{1/2}$

 $R = 3000 \times 10.14 \times 5 \times 10^{-3} = 155 \text{ m}$

where

- R = Radius of influence
- s = Draw down in abstraction borehole at end of pumping
- K_f = Permeability of the aquifer

The equation is approximately correct for unconfined aquifers. In case of a confined aquifer the radius of influence most probably larger and the 155 m are considered to be the minimum value. A draw down of 0.6 m was measured in observation borehole J7-Huis at a distance of 230 m. A more realistic value for R, namely 310 m, is double the calculated value of 155 m.

2

Evaluation of Test Pumping Data

Step test analysis

Evaluation of Test Pumping Data

Test pumping analysis

Pumped well J7_K

Evaluation of Test Pumping Data

Test pumping analysis

Evaluation of Test Pumping Data

Test pumping analysis

Observation well J7Huis

Evaluation of Test Pumping Data

Test pumping diagnosis

Evaluation of Test Pumping Data

Test pumping diagnosis

Pumped well J7_K

Remarks

Merged data of J7_K and observation borehole J7_Huis (230 m distance). J7_Huis penetrates the same aquifer as J7_K and the water level was influenced by the abstraction.

Transmissivity and storativity values were calculated from the J7_Huis data (See Annex 3.1).

Discharge info Dis.dur.:4320 [min] tcorr: 4283 [min]

Av.dis.: 7.11 [m3/h] max.dis.:7.15 [m3/h] min.dis.:7.07 [m3/h] 7.15 [m³/h]

Dis.sum: 512 [m3]

7. Water Level Recorder Installation

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

INSTALLATION OF SEBA FLOATERS

JICA REFERENCE: J7K LOCALITY: Jakkalsdraai R 228

WW 39852

1.	Serial Number of floater:	4542
2.	Date installed:	5/10/00
3.	Rest Water Level when installed:	11.10 mbsu
4.	Distance from stick-up to logger:	6.0 m
5.	Distance from logger to water level:	5.10 m
6.	Cut off:	6.0 m (0.91 + 5.110

