STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN FOR THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN IN THE REPUBLIC OF NAMIBIA

Japan International Cooperation Agency Pacific Consultants International

BOREHOLE FINAL REPORT

Borehole J3-K (WW 39842) Choroaoheib R 300

METZGER PM DRILLING P.O.Box 11733 Windhoek Namibia

Windhoek October 2000

Contents per Chapter

- 1. Geological Borehole log
- 2. Penetration Record
- 3. Mud Rotary Drilling Log
- 4. Geophysical Log and Casing Design
- 5. Borehole Development Data
- 6. Evaluation of Pumping Test
- 7. Water Level Recorder Installation

1. Geological Borehole Log

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

GEOLOGICAL BOREHOLE LOG

Farm Choroaoneid K 300 (Pth Steynsrus)	WW 39842
Jica Reference: J - 3 - K	S 24. 04592°
Date completed: 8 June 2000	E 18. 79340°
	Collar elev.: 1205 m

Depth below surface (m)	Section (m)	Lithology	Stratigraphy
0 - 5	5	Massive white sandy calcrete . Shallow cover of reddish brown medium to coarse sand.	
5 - 10	5	Gravel -bed : Coarsening downwards from slightly calcareous unsorted gravel to coarse, unsorted, partially calcretized pebbles up to 10 mm Ø.	
10 - 13	3	Sandy and gravelly calcrete.	
13 - 25	12	Poorly consolidated quartz gravel. With increasing depth gravel is progressively more cemented by a white calcrete	KALAHARI
25 - 28	3	Coarse gravel (quartz, rounded) in a yellowish orange clayey matrix.	
28 - 38	10	Pinkish white massive calcrete.	
38 - 43	5	Calcretized unsorted gravel bed: conglomerate.	
43 - 53	10	Calcrete, massive white to 49 m, then slightly clayey reddish brown to 53 m.	
53 - 58	5	Reddish brown calcareous, fine to coarse grained (unsorted) sandstone.	
58 - 64	58 - 64 6 Light reddish brown to (in places) light grey sandstone, calcareous and unsorted. Sample contaminated by washout from upper pebbly Kalahari beds.		RIETMOND
64 - 68	4 Fine to medium grained pale brownish sandstone , calcareous. Occasional larger pebbles embedded in sandstone.		
68 - 76	8	Slightly calcareous gravel in a fine grained sandstone matrix	
76 - 102 FOH	26	Fine to medium grained sandstone, calcareous. Colour	

LUII	light brownish, changing to right reaction brown what	
	depth. Intercalations of shale.	

Remarks:

- The drilling method was mud-rotary, resulting in a highly ground mass of drill cuttings being retrieved.
- The poorly consolidated upper Kalahari horizons through continuous collapse and wash out cause contamination of the samples collected from lower horizons. Description of samples should take this into account.
- Hydrogeologically, in this case the Kalahari and Rietmond are considered to be one continuous unit.

1

This borehole was logged by F. Bockmuhl.

2. Penetration Record

Sheet1

Penetration Record J 3 K		
Depth (m)	Pen. Rate (min/m)	
5		
	2.75	
	2.6	
	2.2	
10	4.7	
	9	
	66	
	2.9	
	2.75	
15	2.15	
15	4.95	
	4.4	
	2.13	
	2.13	
20	0.9	
20	10.4	
	10.4	
	3.03	
	4	
	4.8	
25	18	
	6.3	
	4.5	
	9.65	
	11.5	
30	8.15	
	8.6	
	9.5	
	10.75	
	12.5	
35	8.1	
	7.75	
	8.9	
	7.5	
	6.6	
40	5.5	
	3.75	
	4.75	
	3.65	
	6.9	
45	7.8	
	6	
	7.75	
	10.95	
	11	
50		
	9	

Page 1

	7
	6
	8
55	8.7
	9.6
	8.6
	7.7
	5.6
60	6.75
	8.6
	7.1
	5.95
	9.4
65	83
05	5
	5 3
	5.5
	4.0
70	5.8
/0	7.3
	8.4
	3.3
	4.8
	10.55
75	9.3
	8.7
	5.5
	8.1
	6
80	3.55
	4.2
	5.5
	3.1
	12.95
85	12.75
	6.9
	11
	12.25
	9.5
90	7.6
	4 3
	5.4
	91
	4.4
95	5.2
15	7
	6
	2.0
	3.9
100	3.7
100	2.9
100	3
102	5.5

Sheet1

Page 2

Pentration Record J 3 K

3. Mud Rotary Drilling Log

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

MUD ROTARY DRILLING LOG

JICA REFERENCE: J 3 K LOCALITY: Choroaoheib <u>WW</u> 39842

TIME	DEPTH mbgl	MARSH FUNNEL TEST 1000 ml (sec)	MARSH FUNNEL TEST 500 ml (sec)	E. C. mS/cm	DENSITY	рН	TEMPERATURE ° C	
13:10	102	41	27	11.62		8	24.10	
		29		11.2		8	22.4	

GENEREAL REMARKS:

- 1. Only one measurement taken.
- 2. This borehole was drilled to a depth of 102 m at 12 $\frac{1}{4}$ ϕ .
- 3. Geophysical logging was done inone step.
- 4. To obtain the electrical resistivity of the samples expressed as Ω-m., the E.C., expressed as S/m should be inversed.

DATE: 6 June 2000

COMMENT

After trip at end of hole Water from tanker

4. Geophysical Log and Casing Design

Post	aidon Geophysics (M. N. SX55)		
C	CONSULTANT PACIFIC CONSULTANTS INTERNATIONAL		
C	COMPANY METZGER PM DRILLING		
P	ROJECT The Study on the Groundwater Potential Evaluation and Management Plan in the Southeast Kalahari (Stampriet) Artesian Basin		
v	VELL ID J3K WW39842		
eidon Geophysic c WVW 39842 broacheib b. J3K	OCATION CHOROAOHEIB		
CO. Pos WELL.J3K PROJ. LCN. Che STE. J 3 FILING Ne	COUNTRY REPUBLIC OF NAMIBIA		
BH COORDINATES	S 24.04592 E 18.79346		
COLLAR ELEVATION LOG MEAS. FROM Gro	1205m pundlevel		
DRILLING MEAS. FROM	Groundlevel		
DATE	07 June 2000		
TYPE LOG	Physical Properties		
DEPTH-DRILLER	101m		
DEPTH-LOGGER BTM LOGGED INTER VA	DEPTH-LOGGER 101.20m BTM LOGGED INTERVAL 101.20m		
TOP LOGGED INTERVAL 0.60m			
PERMANENT DATUM Groundlevel			
RECORDED BY Clemence Kambewu			
WITNESSED BY Frank Bokmuhl			
	JAPAN INTERNATIONAL COOPERATION AGENCY		

5. Borehole Development Data

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

BOREHOLE DEVELOPMENT DATA

JICA REFERENCE: J 3 K

LOCALITY: Choroaoheib R 300

WW 39842

]	Water Level (mbsu)	Yield (m ³ /h)	¹ / ₂ 90° V-Notch (mm)	P.I.D. (mbsu)	TIME (actual)
Date 18/06/00	19.85	2.16	60	~49	6:00
Date 19/06/00	22.35	4.25	77	~69	7:00
	33.20	1.75	55	~80	16:00
	30.27	2.16	60		17:00
	30.26		60		20:00
Dat	32.42		60		07:00
	30.37	2.5	65		08:00
	33.82	2.16	60		09:00
	33.82		60		10:00
	32.90		60		11:00
Varying airflow i			65 to 80		14:00
	28.45	1.75	55		15:00
Continue	30.13	1.44	50		16:00
Waterlevel has reco 21/06/00	21.00	1.75	55	~80	07:00

Remarks:

- 1. This borehole was also developed by cable tool. This was done primarily in order to settle and developed the gravel pack emplaced around the casing and screens.
- 2. Dates and times of the cable tool development are as follows:

DATE: 18/06/2000 (starting)

Remarks
. Continue until 14:30
. Continue until 12:00
e 20/06/00
c 20/00/00.
n order to surge borehole.
through the night.
vered at the low vield. Date

0. Stop airlift test.

	Hours	Date	
Surge as as plung	11	10/06/2000	
Bailing fraction	10.5	11/06/2000	
	10	12/06/2000	
	9	13/06/2000	
Bailin	1	14/06/2000	

3. The total time for development by cable tool is 41,5 hours.

4. Finally this borehole was also developed by electrical submersible pump on 25/06/2000.

Time (actual)	Pump time (min)	Water Level (mbsu)	Yield (m ³ /h)	E.C. (mS/m)	Ren
12:45	0	19.89			Rest wa
12:46	1	24.74			
	2	25.65	1.6	324	
	3	26.30			
	4	26.89			
	5	27.35			
	6	27.77			
	7	28.18			
	8	28.47			
	9	28.71			
	10	29.00			
	12	29.29			
	14	29.60			
	16	29.78			
	18	29.92			
	20	30.00			

Work done

and plunge borehole. Add gravel ging results in settling of gravel. g. Remove drilling mud and fine n of gravel accumulated in sump. Bailing and plunging.

Plunging and bailing.

ng to clean sand trap (= sump)

narks	
ater Level	

Time (actual)	Pump time (min)	Water Level (mbsu)	Yield (m ³ /h)	E.C. (mS/m)	Ren
	23	30.11			
	26	30.18			
	30	30.22			
	35	30.28			
	40	30.34			
	45	30.40			
	50	30.41			
	55	30.41			
	60	30.42			
13:55	70	30.48			
	71	30.57			
	72	30.62			
	73	30.80			
	74	30.89			
	75	30.98	2		
	76	32.10			
	77	33.53			
	78	34.35			
	79	35.15			
	80	35.32			
	82	35.27			
	84	35.37			
	86	35.52			
	88	35.70			
	90	35.91			
	93	36.15			
	96	36.41			

narks		
	· · · · · · · · · · · · · · · · · · ·	

.

Time (actual)	Pump time (min)	Water Level (mbsu)	Yield (m ³ /h)	E.C. (mS/m)	Ren
	100	36.73			
	105	37.24			
	110	37.50			
	115	37.70			
	120	37.91			
	125	37.99			
	130	38.01			
14:56	131	38.90			
	132	41.17	3.8		
	133	42.48			
	134	43.65			
	135	44.65			
	136	45.70			
	137	45.80			
	138	48.15			
	139	49.90			
	140	53.40			
	142	55.80			
	144	58.35			
	146	61.09			
15:14	148	63.21			Stop. Water le
and the second s					*

narks	
-	
vel close to PID	

6. Evaluation of Pumping Test

1. PUMPING TEST ANALYSIS

J3-K (WW39842) - Pumping well

J3-A (WW39843) - Observation well

1.1. Well Efficiency (Step Drawdown Test) (Annex 1)

Well Efficiency was analysed by making use of the Jacob method for draw down data. Aquifer parameters used for the calculation of well efficiency were obtained from the evaluation results of the constant discharge test, which is discussed in **Section 1.2** below.

The well efficiencies at the range of pumping rates used during the step drawdown test are summarised in **Table 1** below. The correlation between the pumping rates and draw down is however poor during simulation of the actual data and the correctness thereof is questioned.

Only three of the four step could be evaluated, as step four was influenced by negative boundary conditions.

Borehole number	Step	Abstraction Rate [m ³ /h]	Draw Down* [m]	Borehole Efficiency [%]	
	1	0.98	5.99	78.7	
J3-K	2	1.47	8.42	74.9	
	3	1.96	13.1	71.6	

Table 1: J3-K; Borehole efficiency at various pumping rates

* at cut-off time Δt , after which well bore storage has no affect on the well performance

Data on the linear and non-linear well losses and skin factors as well as the efficient well radius are presented in Annex 1.

1.2. Constant Discharge Test Analysis (Annex 2 - 6)

The constant discharge draw down curve of abstraction borehole **J3-K** indicates leaky conditions. For leaky aquifers, the Walton Hantush analysis method with draw down and recovery data was used to calculate the hydraulic conductivity of the aquifer and the aquitard **(Annex 2 & 3)**. Using the normal Theis or Cooper-Jacob analysis will result in the over estimation of the hydraulic conductivity of the leaky aquifer and an under estimation of the hydraulic conductivity of the aquifer (Kruseman, De Ridder, 1992)

Aquifer storativity was estimated due to the fact that observation borehole **J3-A** is located in the Auob sandstone aquifer and not in the pumped Kalahari and "Rietmond" aquifers. During the duration of the constant discharge test, a rise in the water level of observation borehole **J3-A** is observed, which indicates that the Auob sandstone aquifer was not influenced by abstraction over the period of testing (See Annex 5).

The occurrence of leakage could be due to water derived from storage within the aquitard. The sandstone within the Rietmond formation is confined and under higher hydraulic pressure and will also contribute to leakage occurring into the upper Kalahari aquifer. The results of the constant discharge analysis are summarised in **Table 2** below.

Borehol e number	Analysis Method	т	s	k	s [-]	Simulation model	Comments
		[m²/day]	[m]	[cm/sec]			
J3-K	Walton- Hantush - draw down	6,42	50	1,5 x 10 ⁻⁴	*1 x 10 ⁻⁶	- Hantush	*Storativity estimated - Observation borehole not located in the tested aquifer
	Walton- Hantush - recovery	6.88	50	1,6 x 10 ⁻⁴	*1 x 10 ⁻⁶		

Table 2: Aquifer Parameters calculated for J3-K; Kalahari

The Hantush model for leaky condition from aquitard storage was used to simulate and verify the actual data and analysis approach of the constant discharge test. Simulation parameters summarised in **Table 2** were used in simulation of the actual pumping test data (See **Annex 4** for simulation results).

Annex 6 compares the draw down results of the pumping borehole J3-K and observation borehole J3-A and it is clear that pumping from the Kalahari aquifer did not have any influence on the Auob sandstone aquifer.

The radius of influence (R) was estimated after SICHARDT (1928) using the equation:

 $R = 3000 \times s \times K_f^{1/2}$

 $R = 3000 \times 11.3 \times 1.26 \times 10^{-3} = 42 \text{ m}$

where

R = Radius of influence

s = Draw down in abstraction borehole at end of pumping

K_f = Permeability of the aquifer

The equation is approximately correct for unconfined aquifers. In case of a confined aquifer the radius of influence most probably larger and the 42 m are considered to be the minimum value.

A proper evaluation of R (and storativity S) will only be possible once reliable data from observation wells, penetrating the same aquifer as the pumped well, are available.

7. Water Level Recorder Installation

THE STUDY ON THE GROUNDWATER POTENTIAL EVALUATION AND MANAGEMENT PLAN IN THE SOUTHEAST KALAHARI (STAMPRIET) ARTESIAN BASIN

INSTALLATION OF SEBA FLOATERS

JICA REFERENCE: J 3 K LOCALITY: Choroaoheib R 300

WW 39842

1.	Serial Number of floater:	4554
2.	Date installed:	6/09/00
3.	Rest Water Level when installed:	20.53 mbsu
4.	Distance from stick-up to logger:	11.0
5.	Distance from logger to water level:	9.53
6.	Cut off:	11.0 (0.91 + 10.11)

