
GROUNDWATER RESOURCES GOVERNANCE in TRANSBOUNDARY AQUIFERS

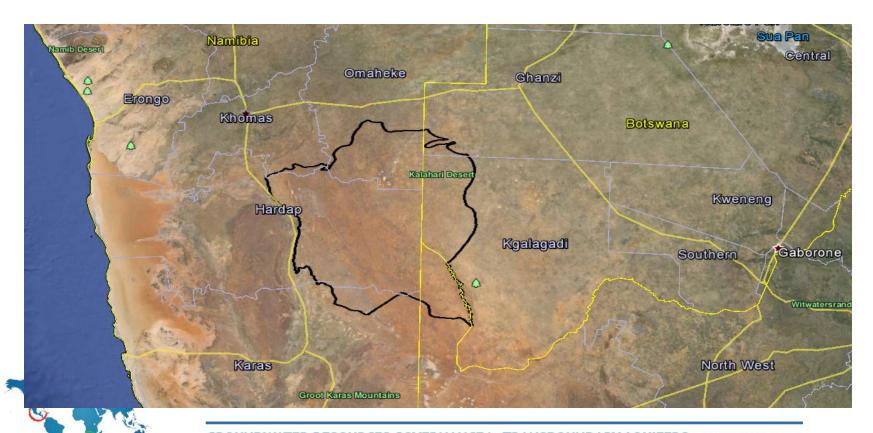
(GGRETA Project)

Stampriet Transboundary Aquifer System (STAS) assessment Preliminary findings

Swiss Agency for Development

Outline

- 1. The STAS area
- 2. Overview of the STAS



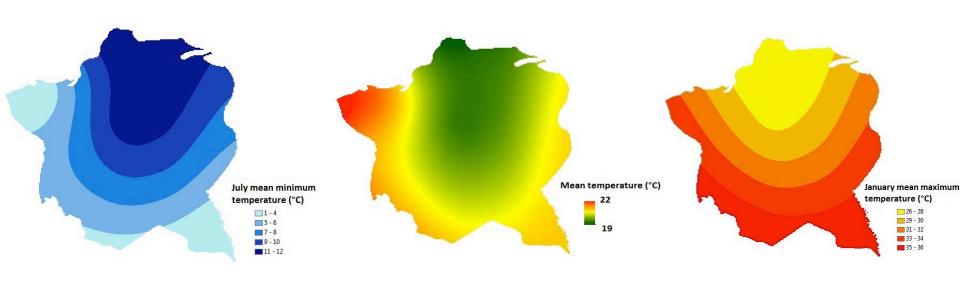
The STAS area

Location

- The Stampriet Transboundary Aquifer System (STAS) is named after the discovery of artesian water at Stamprietfontein during coal explorations in 1910.
- The STAS stretches from Central Namibia into Western Botswana and South Africa's Northern Cape Province, and lies within the Orange River Basin.
- The STAS covers a total area of 86 647km2, of which 73% of the area is in Namibia,
 19% in Botswana, and 8% in South Africa

Landscape

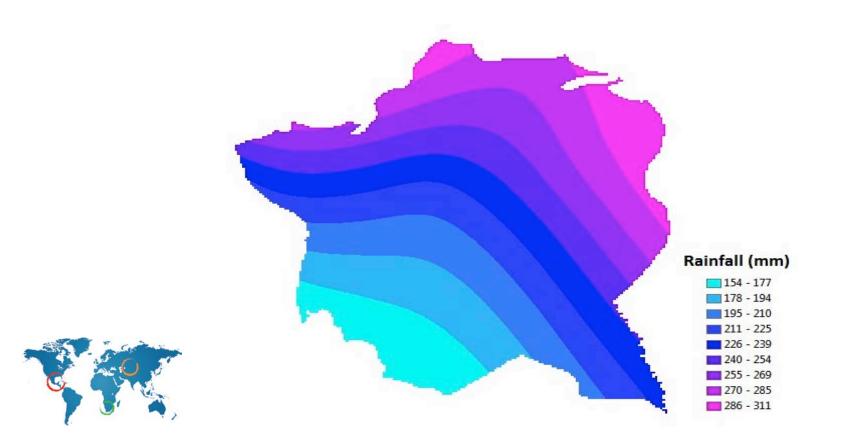
• The STAS is characterized by various landscapes, including sand dunes in Namibia and South Africa, calcrete/sandy surface area with shrubs and in some cases thick bushes. Seasonal pans are also important features found across the STAS.


Common landscapes in the STAS: dune area stretching from the Auob to the Nossob River (top left), calcrete/sandy surface where pans are quite common (top right), deep cut in the Auob and Nossob Rivers (bottom center) (Source: J. Kirchner)

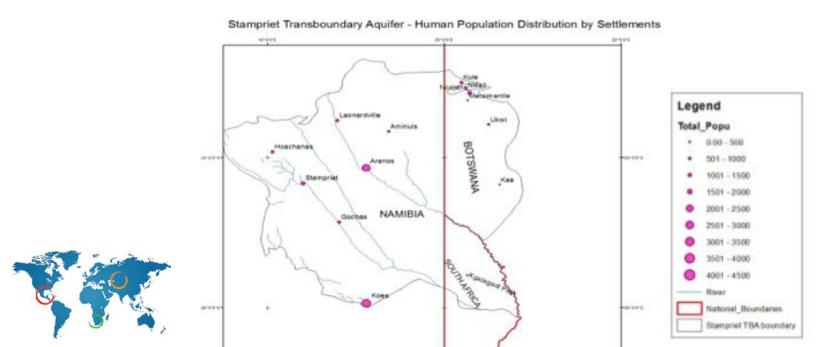
Climate

• Temperature:

- High temperature time fluctuations owing to the semi-arid conditions
- Mean temperature: 19-22°C
- July mean minimum temperature: 1-12°C
- January mean maximum temperature: 26-36°C
- Only 2 temperature stations within the study area (Aranos and Bitterwasser)



Climate


• Rainfall:

- The average rainfall for the STAS is 150 310 mm/y
- Maxima of up to 310 mm/y in the north and northeast Botswana area of the STAS and decreases to about 150 mm/a in the South Africa and south-western Namibia portion of the study area.
- From December to April: predominantly in the form of thunderstorms (high intensity and short duration).
- Only 2 rainfall stations within the study area (Aranos and Ncojane)

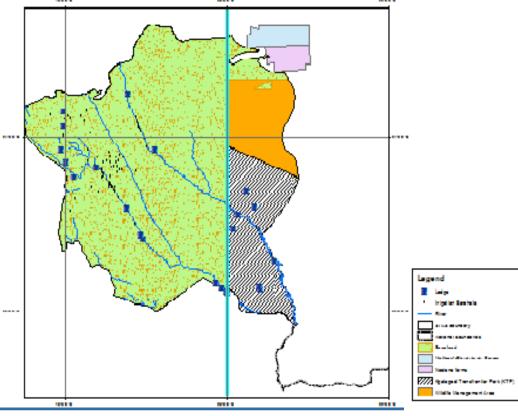
Demography

- The STAS area is lightly populated with population concentrated in small rural settlements.
- Population is estimated to be over 45,000
- Significant settlements:
 - Namibia: Koes, Aranos, Stampriet, Hoachanas, Leonardville
 - Botswana: Ncojane, Kule
- Total population of the area is difficult to estimate because it includes an itinerant population that move into and out of the area.
- Demographic growth from STAS 1991 to 2015 is estimated at 50%

Economy

- Groundwater is the major only source of water in the STAS, to provide portable water to the people, livestock and for irrigation.
- Total abstraction estimated at 20 Mm³/y
- Approximately 95% of total abstraction occurs in Namibia

High water losses, e.g. in Stampriet 60% loss as percent of water supply (DWA,


2006)

Borehole leakages

Illegal abstraction occurs

Groundwater use

Economy

- Approximately 160 irrigation farms (13,5% of total) have been identified in Namibia (DWA 2001)
- Irrigation represents approximately 0.008% of the study area (DWA 2001)
- Livestock:
 - Large stock: approximately 100 000
 - Small stock: approximately 1 300 000
- Employment:
 - 364 estimated people directly employed on farms owing to the existence of irrigation technology
 - Approximately one extra worker per hectare of irrigated land
- Questions that still need to be addressed:
 - Little information on variability and variations in time, i.e.
 - Is it possible to estimate evolution of irrigated land?
 - Is there any up to date economic valuation of the STAS? (information obtained back to 2001)
 - Can we roughly estimate how/where groundwater is being abstracted (from which aquifers?)

Prosopis

• Prosopis is an alien invasive species which is posing negative impacts to the environment (e.g. reduction in grazing land and groundwater)

Prosopis covered Nossob River upstream of Leonardville (Namibia) (Source: J. Kirchner)

Prosopis

 Projected Prosopis density will stand at 3549 trees/ha in the Auob Basin and 12911 trees/ha in the Nossob Basin in ten years time (DFRN, 2012)

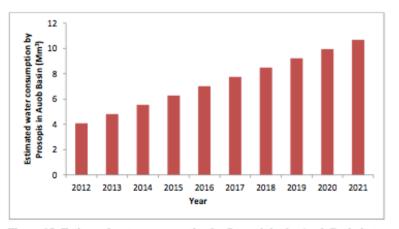


Figure 15: Estimated water consumption by Prosopis in the Auob Basin in ten years

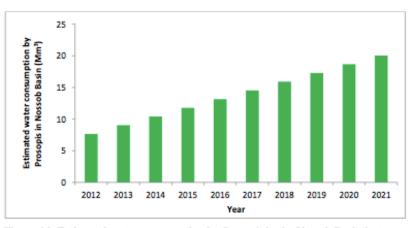
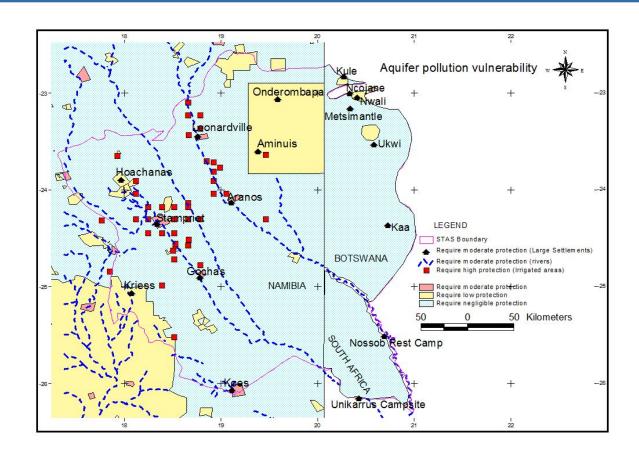


Figure 16: Estimated water consumption by Prosopis in the Nossob Basin in ten years

Prosopis

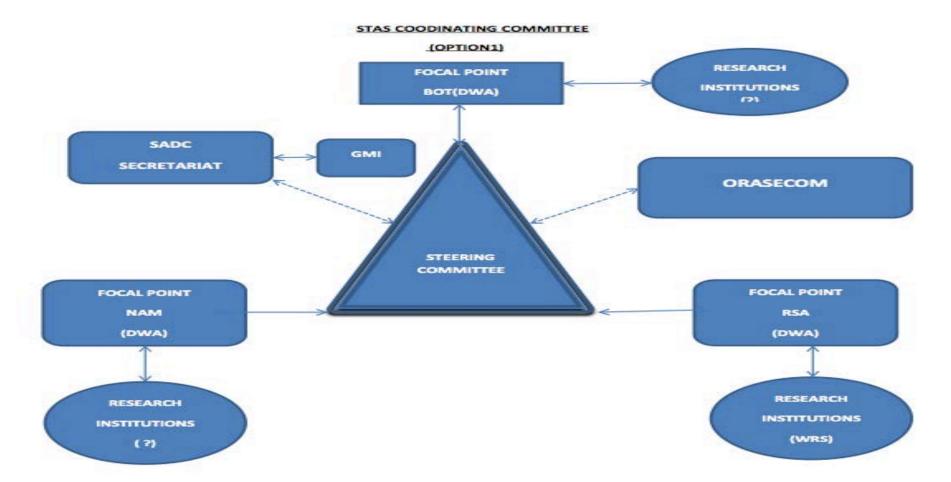
- Although *Prosopis* seems to be posing negative impacts, it has a great economic potential which is not being fully exploited. Currently, N\$121 189.00/annum and N\$43 017.86/annum is generated from the sale of pods in the Auob and Nossob Basins.
- If fully exploited, the current density of *Prosopis* (4612trees/ha and 1191trees/ha) can generate an income of approximately N\$7 378 560.00/annum in the Auob Basin and N\$1 906 048.00/annum in the Nossob Basin from the sale of pods. At present only 1.64% of the potential income from the sale of pods is earned in the Auob Basin and a mere 0.02% is earned in the Nossob Basin.
- If *Prosopis* is fully exploited it can contribute to employment opportunities for some of the poorest people in the Auob and Nossob Basins, especially considering the low employment rates.
- Recommendation: Develop and implement policies and legislation on alien invasive species to guide control measures for *Prosopis* and other alien invasive species.



Groundwater quality & Pollution

- Groundwater quality decreases southeasterly (Salt Block)
- Pollution vulnerability in the STAS is generally negligible at the current levels of development
- However, TDS levels have increased by 10% in the last 30 years
- There are some localised potential sources of pollution to the shallow aquifers (close to settlements)
- Special attention should be given to irrigation boreholes (along the Auob and Nossob rivers)
- Recharge zones in Namibia should also be addressed.

Groundwater risk map


Map still needs to be finalized in order to include recharge zones

Options of MCCMs

• 2 options:

- Option 1: Coordinating STAS Committee
- Option 2: Standing ORASECOM Committee

Overview of the STAS

Geology

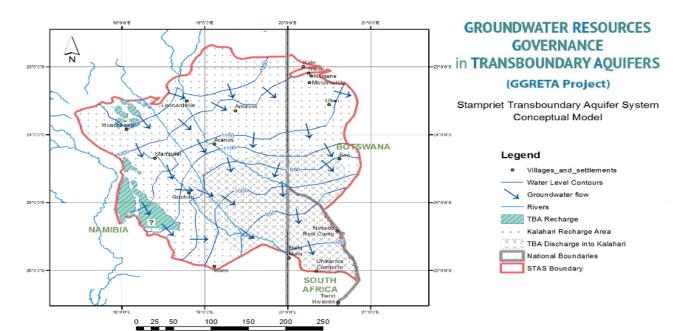
• STAS = unconfined aquifers (Kalahari) + confined aquifers (Auob and Nossob)

Kalahari aquifers				
Impermeable layer				
Auob aquifer				
Impermeable layer				
Nossob aquifer				

- <u>Kalahari aquifers:</u> hundreds of individual aquifers more or less loosely connected forming an unconfined aquifer system **NOT TRANSBOUNDARY**
- <u>Auob and Nossob aquifers:</u> confined aquifer with isolated outcrops in the extreme western part of the STAS in Namibia **TRANSBOUNDARY**
- Recommendation: The Kalahari and the Auob and Nossob have different dynamics and need to be treated separately, especially from a policy point of view

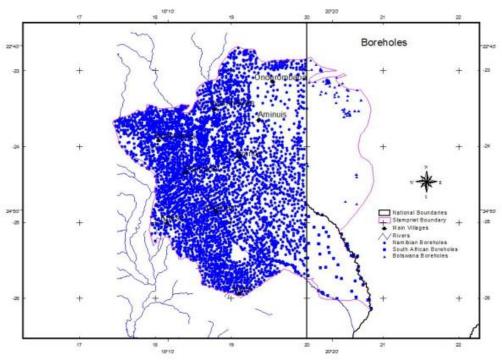
Conceptual model

• Recharge:

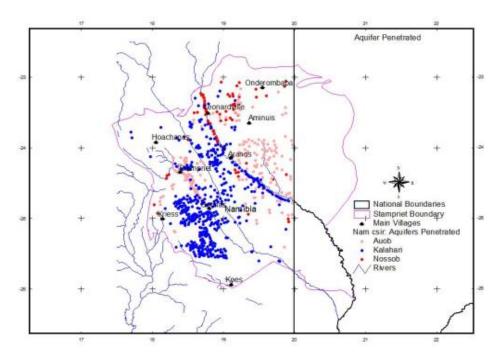

- Kalahari aquifers = 0.5% of rainfall
- Auob and Nossob aquifers = almost non-existant. Noticeable recharge occurs in heavier rainfall events through numerous sinkholes in calcrete near the north-western and western boundaries of the STAS

Discharge:

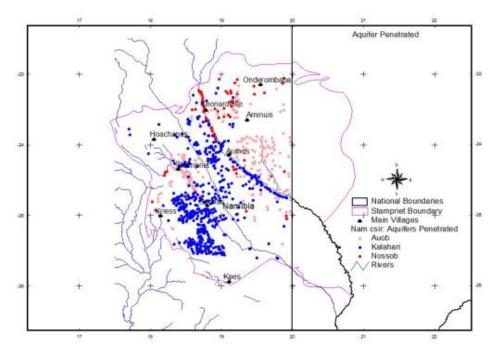
- Kalahari aquifers = evaporation
- Auob and Nossob aquifers = draining into Kalahari aquifers (Salt Block)


Groundwater flow:

- Auob and Nossob aquifers = from northwest to southeast
- Kalahari aquifers = follow the same pattern


• Approximately 6000 boreholes have been identified in the STAS...

Country	Number of boreholes	% of boreholes
<u>Namibia</u>	<u>5403</u>	<u>97</u>
<u>Botswana</u>	<u>137</u>	<u>2</u>
South Africa	<u>57</u>	<u>1</u>
<u>Total</u>	<u>5597</u>	100


• ... However information on which aquifers we're tapping in is very limited (i.e. only 15%)

	<u>Namibia</u>		<u>Botswana</u>		South Africa		<u>Total</u>	
Aquifer penetrat ed	Number of borehol es	% of total borehol es	Number of borehol es	% of borehol es	Number of borehol es	% of borehol es	Number of borehol es	% of borehol es
<u>Kalahari</u>	<u>518</u>	<u>60</u>	N/A	N/A	<u>57</u>	<u>7</u>	<u>575</u>	<u>67</u>
<u>Auob</u>	203	<u>23</u>	9	<u>1</u>	<u>0</u>	0	212	<u>24</u>
Nossob	<u>74</u>	9	N/A	N/A	0	0	<u>74</u>	9
Total	795	92	9	1	57	7	861	100

• ... However information on which aquifers we're tapping in is very limited (i.e. only 15%)

	<u>Namibia</u>		<u>Botswana</u>		South Africa		<u>Total</u>	
Aquifer penetrat ed	Number of borehol es	% of total borehol es	Number of borehol es	% of borehol es	Number of borehol es	% of borehol es	Number of borehol es	% of borehol es
Kalahari	518	60	N/A	N/A	57	7	575	67
Auob	203	23	9	1	0	0	212	24
Nossob	<u>74</u>	9	<u>N/A</u>	N/A	0	0	<u>74</u>	9
Total	795	92	9	1	57	7	861	100

Questions that still need to be addressed:

- Having in mind the lack of data, how to take into consideration groundwater pollution treating separately the Kalahari and the Auob and Nossob aquifers?
 - ✓ 1 map for the Kalahari aquifers and 1 map for the Auob and Nossob aquifers?
- Having in mind the lack of data, how to take into consideration policy-making treating separately the Kalahari and the Auob and Nossob aquifers?
 - ✓ Kalahari > more domestic policy oriented?
 - ✓ Auob and Nossob > more transboundary policy oriented?
- How to take into consideration treating separately Is it possible to have a map with STAS artesian conditions?

