
human impacts. Anthropogenic increases in river fluxes can be
estimated by quantifying terrigenous mud accumulation offshore
adjacent to rivers, and in the case of South Africa indicate a
12-fold increase since the Pliocene for the east coast (Martin,
1987) and a 13-fold increase since the Neogene for the west coast
(Dingle and Hendey, 1984). However, deriving natural back-
ground rates of erosion over long, million-year timescales is com-
plicated by tectonic and climatic variations, which may have
significantly altered river drainage, sediment discharge and dis-
persal (Partridge and Maud, 2000). Therefore, it is desirable to
compare modern river discharge with that of the Holocene, a
period during which tectonism and climate were largely similar to
today. Here, we estimate the mass of terrigenous mud on the
western continental margin to derive the mean Holocene mud
flux of the Orange River and reconcile the large increase in the
modern flux with soil erosion within the Orange River catchment.

Introduction

Soil erosion is a major environmental threat globally and in South
Africa is highly variable and linked to past land-use change
(Garland et al., 1999) and likely to be influenced by future cli-
mate change (eg, Lobell et al., 2008). A pre-dam (1930–1969)
sediment discharge of 60 million metric tons/year (Mt/yr), of
which 50 Mt/yr is mud, makes the Orange River the most turbid
in Africa and the fourth most turbid river in the world (Bremner
et al., 1990). Most rainfall and erosion occur in the eastern por-
tion of the 0.9 million km2 catchment (Figure 1). The suspended
mud load of rivers can provide a useful measure of accelerated
soil erosion, but requires an estimate of river fluxes prior to

Abstract: Soil erosion poses a major threat to sustainable agriculture in southern Africa but is difficult to quantify.
One measure of soil erosion is the sediment flux of rivers. The Orange River is the principal source of sediment
to the western margin of SouthAfrica with an estimated mean mud flux over the last 11 500 years (the Holocene
epoch) of 5.1 (3.2–7.4) million metric tons/year (Mt/yr). A total of 43 gigatons (Gt; 1015 g) representing 72%
of the Holocene mud flux has accumulated on the shelf in the Orange River prodelta and mudbelt, a clayey fine-
silt deposit focused on the inner to middle shelf. Only 8% (5 Gt) of the mud flux occurs in Holocene calcare-
ous ooze on the slope. Comparison of the clay to mud ratio of offshore deposits with Orange River suspended
sediment and catchment soils indicates that 20% (11 Gt) of the Holocene mud flux has been lost as clay beyond
the margin. The Orange River mud flux prior to the building of large dams (1930–1969) is ten times greater
than the mean Holocene mud flux and is reconciled with estimates of soil erosion within the catchment. A ten-
fold increase in the Orange River mud flux implies up to a hundredfold increase in total soil erosion depending
on the extent of mud storage over periods of decades to centuries within the catchment. Erosion has shifted from
areas of high relief and rainfall of the Drakensberg escarpment during the Holocene to intensely cultivated lands
of low relief having moderate to high rainfall in the eastern catchment and to a lesser extent, grazing areas of
the southern Orange River catchment.
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Holocene terrigenous mud on the
offshore margin

This study focuses on the accumulation of terrigenous mud (<63
µm; silt and clay). In part this is because the mud fraction consti-
tutes, along with organic matter, the most valuable components of
soil for sustainable agriculture. Mud is also the sediment most easily
transported in the suspended load of rivers and, in the case of
the western margin of South Africa, most mud has accumulated
during the Holocene in an offshore mudbelt deposit where it can
be quantified from marine geophysical and coring surveys. Sand
carried by the Orange River is separated from the mud fraction by
the high-energy wave climate at the coast. Sand is transported
north by longshore drift and southerly winds to the Namib Desert
whereas the mud is carried out onto the delta and south by a pole-
ward undercurrent to form the mudbelt (Shannon and Nelson,
1996; Rogers and Rau, 2006). Additional sources of terrigenous
mud to the western margin include wind blown dust (Shannon and
Anderson, 1982), erosion of older deposits (eg, Wigley and
Compton, 2006) and discharge from the Olifants and Berg rivers.
These are all considered to be relatively negligible sources of mud
in comparison to the Orange River (Herbert and Compton, 2007).
The mass of terrigenous mud is estimated from the average

thickness and composition of Holocene sediment on the continen-
tal shelf and slope from the Orange River delta (28°S) to the Cape

Canyon (34°S) (Table 1; Figure 2). Mud transport north of the delta
is assumed to be negligible because bottom waters on the margin
flow south (Shannon and Nelson, 1996) and most mud transported
to the Cape Canyon is assumed to be lost from the margin. Data are
compiled from the literature (Wefer et al., 1998; Rogers and Rau,
2006) as well as from the analysis of cores (Wigley and Compton,
2006; Compton, unpublished data, 2004) obtained from diamond
exploration companies and during the scientific cruise of the RV
Meteor (Schneider et al., 2003). The thickness of Holocene sedi-
ment was estimated from calibrated radiocarbon ages where avail-
able (Herbert and Compton, 2007) and down core reflectance (L*)
data in combination with available seismic profiles (Schneider et al.,
2003). Holocene sediment thickness on the slope was estimated as
one half the distance down core to the first minimum (last glacial
maximum) in the reflectance (L*) value, a method generally
supported by available radiocarbon ages. Sediment volume was
obtained by multiplying the area of the different margin deposi-
tional environments by the mean sediment thickness (see below).
Measured dry bulk densities of cored samples (g dry weight/cm3 of
bulk, wet sediment) were used to convert sediment volume to dry
sediment mass. The mean dry bulk density was multiplied by the
mean sediment volume to obtain the mean sediment mass whereas
the range in sediment mass was obtained by multiplying the
minimum and maximum sediment volumes by the corresponding
minimum and maximum dry bulk densities. The mean carbonate,
organic matter (1.45 × organic carbon values shown in Figure 2),
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quartz sand, biogenic silica and pyrite contents were subtracted to
yield a range in terrigenous mud content. Consistent compositional
and thickness trends lend confidence to extrapolation of core data
across the margin. The uncertainty of the estimated masses is
reflected in the bracketed range in reported values (Table 1).
The Orange River delta sediment volume of 38 km3 is based on

seismic profiles (Hoyt et al., 1969). The Orange River delta is
divided approximately in half at a water depth of 40 m between
delta front muddy very fine sand (37–47% mud) and prodelta
clayey silt (70–90% mud) (Rogers and Rau, 2006). The Orange
River estuary has a sediment volume of 1.5 km3 based on the
depth to river channel bedrock (Murray et al., 1971) and surface
estuarine samples (Compton, unpublished data, 2006) have a grain
size similar to the delta front of muddy very fine sand. The high-
energy, wave-dominated inner shelf (0–40 m water depth) outside
the delta contains negligible mud.
Orange River mud transported south by the poleward undercur-

rent forms the mudbelt, a narrow wedge-shaped deposit in-filling
the lowstand (125 m water depth) wave-cut knick point between the
inner and middle shelf. The mudbelt has an area of 1.26×104 km2

which varies in mean thickness from 9 m between the Holgat and
Buffels rivers to 2 m between the Olifants and Berg rivers based on
recovered cores and hydroacoustic sediment echosounder data
(Meadows et al., 2002; Schneider et al., 2003).A total sediment vol-
ume of 48 (44–51) km3 for the mudbelt was estimated by assuming
a gradational thinning from north to south between echosounder
profiles. The mean terrigenous mud content of the mud belt ranges
from 70% to 80% and reflects the mean range in carbonate content
(15–20%), organic matter (3–4%), biogenic silica (1–2%), pyrite
(1–3%) and quartz sand (0–1%). The middle and outer shelf extend
seaward to the shelf break at 300 to 500 m water depth and has a 0.4
(0.2–0.6 ) m thick Holocene sediment drape made up of approxi-
mately equal areas of muddy sand with 30% terrigenous mud, and
sand with <10% terrigenous mud (Rogers and Rau, 2006). The
slope is divided into north and south areas based on carbonate con-
tent, which tends to decrease in the southern area near the Cape
Canyon (Figure 2; Table 1). The mean thickness of Holocene cal-
careous ooze on the upper slope (0.5 to 2 km water depth) is 0.35
(0.24–0.39) m in the northern area and 0.44 (0.25–0.75) m in the
southern area. The mean thickness of Holocene calcareous ooze on
the lower slope (2–3.5 km water depth) is 0.32 (0.20–0.47) m in the
northern area and 0.27 (0.20–0.33) m in the southern area.

Mud transported beyond the
offshore margin

The amount of terrigenous mud transported beyond the study area
is estimated from the difference in the clay to mud ratio of Orange
River suspended sediment (Bremner et al., 1990) and catchment
soils (Compton and Maake, 2007), which ranges from 25% to
33%, and the clay to mud ratio of shelf (10–12%), upper slope
(17%) and lower slope (27%) sediment (Mabote et al., 1997;
Herbert, 2009). The clay to mud ratio of margin sediments is lower
than that delivered by the Orange River and indicates that 11
(7–15) Gt of clay is transported beyond the study area. Dissipation
of wave and tidal energy on the shelf and slope is a common fea-
ture of margins (eg, Nittrouer et al., 2007) including the western
margin of southern Africa (Shannon and Nelson, 1996; Monteiro
et al., 2005). These margin processes can result in frictional
stresses in the bottom boundary layer which generate sediment
resuspension ‘loops’ of erosion–transport–deposition (Thomsen,
2002) during which the finer, clay-size sediment is transported
beyond the margin. Adding the amount of terrigenous clay lost
from the margin gives a total Holocene terrigenous mud flux of 59
(37–85) Gt and a mean Holocene mud flux of 5.1 Mt/yr (Table 1).
This mean value represents the long-term average mud flux with
most mud delivered to the margin episodically on a 10–15 year
flood cycle documented over the last 200 years (Benade, 1988;
Bremner et al., 1990), as well as megaflood events documented
by Orange River paleoflood deposits to occur on an approximate
1000 year cycle (Zawada, 2000; Herbert and Compton, 2007).
Most (72%) of the Holocene terrigenous mud flux has accumu-
lated on the shelf (43 Gt), 5 Gt (8%) has accumulated on the
slope and 11 Gt (20%) has been transported beyond the margin
(Table 1).

Escarpment retreat

What is the source of mud on the margin? Highest rainfall
(650–1050 mm/yr) and relief in the Orange River catchment occur
in the DrakensbergMountains (Figures 1 and 3). But the Drakensberg
basalt and the underlying Clarens Formation sandstone form a
resistant cap rock (Figure 3) with basalt near the drainage divide
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Table 1 Estimated Holocene terrigenous mud masses in gigatons (Gt) (1015 g) for the western margin of South Africa

Region Area Sediment volume Dry bulk density Sediment mass Terrigenous mud Terrigenous mud
(104 km2) (km3) (g/cm3) (Gt) (wt%) (range) mass (Gt)

Estuary 0.01 1.5 (1.2–1.8) 0.65–0.85 1.1 (0.8–1.5) 42 (37–47) 0.5 (0.3–0.7)
Delta front 0.10 19 (16–22) 0.65–0.85 14.3 (10–19) 42 (37–47) 6.0 (3.7–8.9)
Prodelta 0.10 19 (16–22) 0.55–0.75 12.4 (8.8–16.5) 80 (70–90) 9.9 (6.2–14.9)
Inner shelf 0.36 0
Mudbelt 1.26 48 (44–51) 0.55–0.65 28.8 (24–33) 75 (70–80) 21.6 (16.8–26.4)
Mid-outer shelf 8.36 33.4 (16.8–50) 27.5 (12.2–46.3) 4.6 (1.1–11)
sand 4.18 16.7 (8.4–25) 0.8–1 15.0 (6.7–25.0) 5 (0–10) 0.8 (0.0–2.5)
muddy sand 4.18 16.7 (8.4–25) 0.65–0.85 12.5 (5.5–21.3) 30 (20–40) 3.8 (1.1–8.5)

Upper slope 3.28 11.9 (7.9–14.7) 9.1 (5.4–12.4) 1.7 (0.5–2.8)
North 2.75 9.6 (6.6–10.7) 0.65–0.80 7.0 (4.3–8.6) 14 (4–18) 1.0 (0.2–1.5)
South 0.53 2.3 (1.3–4.0) 0.85–0.95 2.1 (1.1–3.8) 31 (27–35) 0.7 (0.3–1.3)

Lower slope 8.58 25.3 (17.2–35) 21.2 (13.7–31) 3.2 (1.5–5.6)
North 4.78 15.3 (9.6–22.5) 0.75–0.85 12.2 (7.2–19.1) 9 (6–11) 1.1 (0.4–2.1)
South 3.80 10 (7.6–12.5) 0.85–0.95 9.0 (6.5–11.9) 23 (17–29) 2.1 (1.1–3.5)

Total margin 22.05 158 (119–197) 114 (75–160) 48 (30–70)

Terrigenous mud lost beyond shelf and slope (see text) 11 (7–15)

Total 59 (37–85)

Sediment volume = area × thickness (variably averaged over the area, see text)



having a denudation rate of only 6 m/Myr based on cosmogenic
isotopes (Fleming et al., 1999). Stream waters draining basalt and
sandstone rocks of the Drakensberg Mountains are clear and
become charged with suspended sediment only once they incise the
relatively easily eroded mudstone of the underlying Elliot
Formation on the lower slopes of the Drakensberg escarpment
(Rooseboom, 1975; Rooseboom and Harmse, 1979; Compton and
Maake, 2007). Incision below the Elliot Formation is limited by
underlying resistant Molteno Formation sandstone layers. Therefore,
the Elliot represents the cutting edge of the Drakensberg escarp-
ment, constituting only 1.1% of the catchment area but providing a
significant amount of the Holocene Orange River mud flux.
The retreat velocity of the western Drakensberg escarpment is

unknown, but the flow of most mountain runoff to the west of the
drainage divide (Figure 3) suggests that it is greater than the 100
(45–200) m/Myr retreat velocity estimated for the eastern escarp-
ment from cosmogenic 36Cl analyses (Fleming et al., 1999; Brown

et al., 2002). Holocene erosion is focused on the interior,
Drakensberg escarpment with denudation rates decreasing rapidly
to the west of the escarpment because of less rainfall and topo-
graphic relief (Le Roux, 1990). Cosmogenic nuclide measurements
indicate denudation rates of 1–3 m/Myr for the interior plateau
of South Africa (Kounov et al., 2007) and a retreat velocity of
10 m/Myr for the coastal plain escarpment in Namibia (Cockburn
et al., 2000). Therefore, prior to human impacts, most of the Orange
River mud flux was derived from erosion of Elliot Formation mud-
stone at the base of the western Drakensberg escarpment.

Soil erosion

The recent ten-fold increase in the Orange River mud flux compared
with the mean rate for the Holocene is attributed to soil erosion
(Garland et al., 1999) and not to unusual flood events (Benade,
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1988; Zawada, 2000). Can the additional mud flux of 45 Mt/yr be
reconciled with estimates of soil erosion within the Orange River
catchment? Although difficult to quantify on regional scales
(Garland et al., 1999; Le Roux et al., 2007), soil erosion is estimated
here for magisterial districts of South Africa by scaling the qualita-
tive degree of soil degradation indicated by sheet, rill and gully ero-
sion (Hoffman et al., 1999) to measured rates of soil loss as
summarized by Garland et al. (1999) (Table 2) and multiplied by
percent land use type (cultivated crops and livestock grazing)

(supplementary Table 3, available online). The erosion rate equiva-
lence to the qualitative degree of soil degradation presented in Table
2 is an initial best estimate based on available erosion data from
areas generally much smaller than magisterial districts. The scaling
up of these erosion rates may be problematic in deriving absolute
rates of soil erosion. However, the relative differences in soil ero-
sion rates are useful to indicate where soil erosion is most intense.
In the eastern catchment there are 15 magisterial districts with ero-
sion rates >400 (410–1440) t/km2 per yr and 13 with rates of
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300–400 t/km2 per yr (Figure 4). In southern districts soil erosion
rates of 150–300 t/km2 per yr are common whereas the western and
northern districts generally have rates <150 t/km2 per yr.
Soil loss from all South African districts within the Orange

River catchment is estimated to be 110 Mt/yr. Soil erosion for
Lesotho is estimated to be 5.4 Mt/yr based on 12% arable land
(3600 km2) and 18 000 km2 grazing land having average erosion
rates similar to bordering districts in South Africa of 750 and 150
t/km2 per yr, respectively. Similarly, areas of southern Botswana
and Namibia within the Orange River catchment have a range in
soil erosion of 12 to 30 Mt/yr based on soil loss rates of 50 to 125
t/km2 per yr in the bordering districts of South Africa. Total soil
erosion from the Orange River catchment is estimated to be
127–145 Mt/yr or 48–55 Mt/yr mud assuming soils contain an
average of 38% mud (Compton and Maake, 2007). The estimated
soil erosion mud flux of 48–55 Mt/yr is in reasonable agreement
(10–20%) with the estimated additional anthropogenic mud flux
discharged by the Orange River of 45 Mt/yr (the difference
between the pre-dam (1930–1969) flux of 50 Mt/yr and the mean
Holocene flux of 5.1 Mt/yr).

On the timescale of the Holocene, the flux of mud to the coast
is assumed to be more or less in steady state with catchment ero-
sion, although long-term changes in sediment storage may result
from infilling or erosion of river channel alluvium in response to
variations in rainfall (Scott and Lee-Thorp, 2004). On shorter,
decadal to century timescales, the total amount of erosion from the
land surface can be considerably greater (90% or more) than the
amount transported out of the catchment because of temporary
storage of eroded sediment in the catchment (Trimble, 1981;
Boardman and Foster, 2008). For example, overgrazed and par-
tially cultivated badlands in the Karoo have erosion rates on the
order of 5500 t/km2 per yr, but the amount transported to dam
reservoirs is 270–500 t/km2 per yr and indicates that most eroded
sediment is stored in the catchments at least on the timescale of 50
years (Boardman and Foster, 2008). The net transport of 270–500
t/km2 per yr falls within the range of erosion rate for moderate to
extreme degrees of soil degradation for grazing lands in Table 2,
consistent with the generally large extent of soil degradation in the
badlands of the Karoo. The general reconciliation of soil erosion
rate to the net exported sediment flux, suggests that the values of
soil erosion used in this study (Table 2) are representative of the
net sediment export from the Orange River catchment and exclude
sediment storage within the catchment. Inclusion of stored sedi-
ment may increase the total amount of soil erosion considerably.
If only 10% of eroded soil has been transported to the coast, then
a tenfold increase in the mud flux implies a hundredfold maximum
potential increase in total soil erosion. However, the preferential
transport of mud in the suspended load and the lesser extent of the
Orange River floodplains and estuary relative to most river sys-
tems would limit the amount of mud storage.
Erosion during the Holocene is focused in areas of high relief

and rainfall along the Drakensberg escarpment but has shifted
recently to intensely cultivated, low-relief agricultural areas hav-
ing moderate to high rainfall (Figure 4). One-third of the total
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Table 2 Conversion of degree of soil degradation to soil erosion rate

Degree of soil degradation Erosion ratea

Crops Grazing

0 none 200 50
1 light 500 100
2 moderate 1000 200
3 strong 3000 300
4 extreme 7000 >300

a(t/km2 per yr); no magisterial district in the catchment has a degree
of soil degradation greater than 3.
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Figure 4 Soil erosion rates for magisterial districts of South Africa. Soil erosion is most intense in areas of high rainfall (Figure 1) and heavily
cultivated land (Le Roux, 1990)



eroded soil is derived from only 8% of the catchment having
>30% cultivated land and 60% of eroded soil is derived from one-
third of the catchment having >10% cultivated land. Areas of high
soil erosion from this study generally overlap with areas of high
denudation rate as indicated by the sediment infilling of dams (Le
Roux, 1990). Therefore, heavily cultivated land where rain falls
primarily as intense summer storms appears to have the greatest
soil erosion (Le Roux, 1990; Garland et al., 1999). Outside of the
Caledon River valley, most of these cultivated lands do not coin-
cide with areas of high long-term Holocene erosion rates associ-
ated with exposures of the Elliot Formation on the lower
Drakensberg escarpment. Although soil erosion is limited by low
rainfall and thin soils in grazing lands of the western catchment,
land degradation can be more severe and less reversible than in
cropland areas (Garland et al., 1999; Hoffman et al., 1999).

Conclusions

The mean Holocene mud flux of the Orange River is estimated here
to be 5.1 (3.2–7.4) Mt/yr based on an inventory of sediment on the
western margin of South Africa. Most (72%) of the terrigenous mud
(43 Gt) is retained on the shelf in the Orange River delta and in the
mudbelt, a clayey silt extending in a narrow band 500 km south of
the Orange River. Only 8% (5 Gt) of the terrigenous mud is
deposited on the slope and 20% (11 Gt) is transported as clay beyond
the margin. During the Holocene, much of the mud was sourced
from erosion of Elliot Formation mudstone which forms the cutting
edge at the base of the western Drakensberg escarpment. The recent
tenfold increase in the Orange River mud flux compared with the
mean Holocene flux reflects increased soil erosion primarily from
heavily (>30%) cultivated areas in the eastern catchment and from
grazing lands in the southern catchment. A tenfold increase in the
river mud flux from land degradation implies a maximum potential
hundredfold increase in soil erosion if only 10% of eroded sediment
has exited the catchment. The amount of eroded sediment stored
over periods of decades to centuries can be large in small subcatch-
ments but the extent of mud storage prior to the building of large
dams is unknown. The capacity for mud storage in the Orange River
is probably less than in most other river systems because of the limited
extent of the Orange River floodplain and estuary.
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