ENVIRONMENTAL FLOW REQUIREMENTS - VOLUME 1 REPORT Assessment of Environmental Flow Requirements Prepared by: in association with # SUPPORT TO PHASE 2 OF THE ORASECOM BASIN-WIDE INTEGRATED WATER RESOURCES MANAGEMENT PLAN WORK PACKAGE 5: ASSESSMENT OF ENVIRONMENTAL FLOW REQUIREMENTS - VOLUME 1 # **ENVIRONMENTAL FLOW REQUIREMENTS** # Compiled by: Delana Louw and Johan Koekemoer (Editors) Updated: December 2010 ### Prepared for: WRP (Pty)Ltd Physical address: Block 5 Green Park Estate 27 George Storrar Drive Groenkloof South Africa, 0181 Postal address: P O Box 1522 Brooklyn Square, 0075 Pretoria South Africa by: Rivers for Africa eFlows Consulting (Pty) Ltd Cell: Postal address: Fax: P.O. Box 1684 Derdepark South Africa, 0035 Tel: +27 12 346-3496 Fax: +27 12 346-9956 E Fax: 086 625 7218 E-mail: wrp@wrp.co.za Internet: www.wrp.co.za Cell: +27 82 461 1289 Fax: +27 86 656 6799 E-mail: iwre@icon.co.za # **REFERENCES** This report is to be cited in bibliographies as: Louw MD and S Koekemoer (editors); Deliverable 12: Volume 1: Environmental Flow Requirements Produced for WRP as part of Support to Phase II ORASECOM Basin Wide Integrated Water Resources Management Plan. i ### **ACKNOWLEDGEMENTS** - Pule, Rapule (ORASECOM Secretariat) - Thamae, Lenka (ORASECOM Secretariat) ### Authors of the report are: - Louw, Delana (Rivers for Africa) - Dr Andrew Birkhead (Streamflow Solutions) - Dr Pieter Kotze (Clean Stream Biological Services) - Dr Rob Palmer (Nepid Consulting) - Dr Patsy Scherman (Scherman, Colloty & Associates Environmental & Aquatic Management Consulting) - Dr Andrew Deacon (SANPARKS) - Dr Hugo Bezuidenhout (SANPARKS) - Prof. Denis Hughes (IWR, Rhodes University) - Koekmoer, Shael (Koekemoer Aquatic Services) - Mackenzie, James (Mackenzie Ecological & Development Services) - Rountree, Mark (Fluvius Environmental Consultants) - Koekemoer, Johan (Koekemoer Aquatic Services) - Mallory, Heather (editing) - Roux, Hermien (North West DACERD: Biodiversity Scientific support) ### **DELIVERABLE 12** #### Consists of three volumes as follows: ### **VOLUME 1: ENVIRONMENTAL FLOW REQUIREMENTS** This is the main report and contains the EcoClassification and EFR results. VOLUME 2: SUPPORT TO VOLUME 1 IN TERMS OF MONITORING: ECOSPECS AND THRESHOLDS OF POTENTIAL CONCERN This document contains the monitoring component of the Work Package 5. The emphasis is on technical data in the form of tables which summarises EcoSpecs and Thresholds of Potential Concern. VOLUME 3: SPECIALIST APPENDICES: SUPPORTING INFORMATION TO VOLUME 1 (ENVIRONMENT FLOW REQUIREMENTS) and VOLUME 2 (MONITORING: ECOSPECS AND THRESHOLDS OF POTENTIAL CONCERN) Information is generated in most specialist fields that are used to support the determination of EFRs, EcoSpecs and TPCs. This information is available in Volume 3. ### **EXECUTIVE SUMMARY** #### **BACKGROUND** This work forms part of the following study: Support to Phase II ORASECOM basin wide integrated water resources management plan. The main objective of the Work Package 5 (Environmental Flow requirements (EFR)), is to assess EFRs at selected key areas of the Orange River Basin at an Intermediate Level (DWA RSA criteria). This report focuses on the results of the EFRs at the EFR sites. The scoping study (Louw *et al*, 2010) provides the 'hotspots' which indicate the areas where detailed information, i.e. in this case, detailed EFR studies will be required. The main rivers within these areas are then selected and delineated into Management Resource Units (Resource Unit Report). These Resource Units indicate an area for which an EFR will be relevant. This means that theoretically, each Resource Unit will require an EFR site where EFRs are determined. The number of EFR sites is however constrained by time, budget and suitability of sites for EFR determination (Resource Unit Report). Once this information is available, field information is collated at the EFR sites and hydrology is produced for the sites. This leads to the determination of the EcoClassification of the EFR sites and the setting of flow regimes to maintain different ecological states. #### STUDY AREA AND LOCATION OF EFR SITES The locality of the EFR sites within the MRUs as identified during this study is provided in the table below. ### Locality and characteristics of EFR sites | EFR site
number | EFR site
name | River | Decimal
degrees S | Decimal
degrees E | EcoRegion
(Level II) | Geozone | Altitude (m) | MRU | Quat | Gauge | |--------------------|-------------------|---------|----------------------|----------------------|-------------------------|--------------------|--------------|--------------------------|------|------------------| | EFR O1 | Hopetown | Orange | -29.516 | 24.00927 | 26.01 | Lowland | 1060 | MRU Orange B | D33G | | | EFR O2 | Boegoeberg | Orange | -29.0055 | 22.16225 | 26.05 | Lowland | 871 | MRU Orange D,
RAU D.1 | D73C | D7H008 | | EFR O3 | Augrabies | Orange | -28.4287 | 19.9983 | 28.01 | Lowland | | MRU Orange E | D81B | D7H014 | | EFR O4 | Vioolsdrif | Orange | -28.7553 | 17.71696 | 28.01 | Lowland | 167 | MRU Orange F | D82F | D8H003
D8H013 | | EFR C5 | Upper
Caledon | Caledon | -28.6508 | 28.3875 | 15.03 | Lower
Foothills | 1640 | MRU Caledon A/B | D21A | | | EFR C6 | Lower
Caledon | Caledon | -30.4523 | 26.27088 | 26.03 | Lowland | 1270 | MRU Caledon D | D24J | | | EFR K7 | Lower Kraai | Kraai | -30.8306 | 26.92056 | 26.03 | Lowland | 1327 | MRU Kraai C | D31M | D1H011 | | EFR M8 | Molopo
Wetland | Molopo | -25.8812 | 26.01592 | 11.01 | Lower
Foothills | 1459 | MRU UM C | D41A | D4H030
D4H014 | #### APPROACHES AND METHOD As indicated in the Terms of Reference, EFRs were determined applying the Intermediate Ecological Reserve Methodology (IERM) (DWAF, 1999). The methodology consists of two different steps: - EcoClassification - EFR quantification for different ecological states The EcoClassification process was followed according to the methods of Kleynhans and Louw (2007) EcoClassification refers to the determination and categorisation of the PES (health or integrity) of various biophysical attributes of rivers compared to the natural (or close to natural) reference condition. The state of the river is expressed in terms of biophysical components: - Drivers (physico-chemical, geomorphology, hydrology), which provide a particular habitat template; and - Biological responses (fish, riparian vegetation and aquatic invertebrates). Different processes are followed to assign a category ($A \rightarrow F$; A = Natural, and F = critically modified) to each component. Ecological evaluation in terms of expected reference conditions, followed by integration of these components, represents the Ecological Status or EcoStatus of a river. The Habitat Flow Stressor Response method (HFSR) (IWR S2S, 2004; O'Keeffe *et al.*, 2002), a modification of the Building Block Methodology (BBM; King and Louw, 1998) was used to determine the low (base) flow EFRs. This method is one of the methods used to determine EFRs at the intermediate level. The approach to set high flows is a combination of the Downstream Response to Imposed Flow Transformation (DRIFT; Brown and King, 2001) approach and BBM. #### **ECOCLASSIFICATION RESULTS** The results are summarised in the table below. ### **EcoClassification Results summary** ### **EFR O1 (HOPETOWN)** #### **EIS: MODERATE** The highest scoring metrics are instream and riparian rare and endangered biota, unique riparian biota, instream biota intolerant to flow, taxon richness of riparian biota, critical riparian habitat and refugia and riparian migration corridor. #### PES: C The major issues that have caused the change from reference conditions are the releases for hydropower, barrier effects of the dams, water quality problems and the destruction of and removal of vegetation on floodplains for agriculture. The dominant factor seems to be the hydro-electric releases. | Driver Components | PES | TREND | |------------------------|------|-------| | IHI
HYDROLOGY | E | | | WATER QUALITY | D | | | GEOMORPHOLOGY | C/D | - | | INSTREAM IHI | D/E | | | RIPARIAN IHI | O | | | Response Components | PES | TREND | | FISH | C/D | 0 | | MACRO
INVERTEBRATES | C | 0 | | INSTREAM | C | 0 | | RIPARIAN VEGETATION | B/C | 0 | | RIVERINE FAUNA | С | 0 | | ECOSTATUS | С | 0 | | EIS | MODE | RATE | #### **EFR O2 (BOEGOEBERG)** #### **EIS: HIGH** Highest scoring metrics are instream and riparian rare /endangered biota, unique riparian biota, instream biota intolerant to flow, taxon richness of riparian biota, diversity of riparian habitat types, critical riparian habitat, refugia, and migration corridor. ### PES: C Loss of frequency of large floods, agricultural return flows, higher low flows than natural in the dry season, drought and dry periods, decreased low flows at other times, release of sediment, presence of alien fish species and barrier effects of dams. #### REC: B/C Instream improvement was not possible due to constraints and no EFR will be set for REC. ### AEC D (instream) Decreased low flows in the wet and dry season. Decreased floods, decreased dilution resulting in worse water quality. Reduced low flows will result in less light penetration which will result in algal and benthic growth. | Driver
Components | PES | TREND | REC | AEC↓ | | | | | | | |------------------------|-----|-------|-----|------|--|--|--|--|--|--| | IHI
HYDROLOGY | E | | | | | | | | | | | WATER QUALITY | С | | С | D | | | | | | | | GEOMORPHOLOGY | С | 0 | С | С | | | | | | | | INSTREAM IHI | C/D | | | | | | | | | | | RIPARIAN IHI | B/C | | | | | | | | | | | Response
Components | PES | TREND | REC | AEC↓ | | | | | | | | FISH | С | 0 | С | D | | | | | | | | MACRO
INVERTEBRATES | С | 0 | С | D | | | | | | | | INSTREAM | С | 0 | С | D | | | | | | | | RIPARIAN
VEGETATION | В | 0 | A/B | B/C | | | | | | | | RIVERINE FAUNA | С | 0 | В | С | | | | | | | | ECOSTATUS | С | 0 |
B/C | С | | | | | | | | EIS | | HIGH | | | | | | | | | #### **EFR O3 (AUGRABIES)** #### EIS: HIGH Highest scoring metrics are instream and riparian rare /endangered biota, unique instream and riparian biota, taxon richness of riparian biota, diversity of riparian habitat types, critical riparian habitat, refugia, migration corridor, National Park. #### PES: C Decreased frequency of large floods. Agricultural return flows, agricultural activities and associated water quality impacts. Higher low flows than natural in the dry season, drought and dry periods. Decreased low flows at other times. Presence of alien fish species and barrier effects of dams and alien vegetation. Decreased sedimentation. #### REC: B Reinstate droughts (i.e., lower flows than present during the drought season). Improved (higher) wet season base flows. Clear vegetation. Improved agricultural practices. #### AEC: D Increased agriculture with associated impacts on water quality and decreased wet season base flows. Decreased floods. Increased vegetation aliens. | Driver
Components | PES | TREND | REC | AEC↓ | |------------------------|-----|-------|-----|------| | IHI
HYDROLOGY | Е | | | | | WATER QUALITY | С | | С | D | | GEOMORPHOLOGY | С | 0 | С | C- | | INSTREAM IHI | D | | | | | RIPARIAN IHI | C/D | | | | | Response
Components | PES | TREND | REC | AEC↓ | | FISH | С | 0 | В | D | | MACRO
INVERTEBRATES | С | 0 | В | D | | INSTREAM | С | 0 | В | D | | RIPARIAN
VEGETATION | B/C | - | В | С | | RIVERINE FAUNA | С | 0 | В | С | | ECOSTATUS | С | 0 | В | C* | | EIS | | HI | GH | | $^{^{*}}$ The focus for setting EFRs will be on the instream EC of a D #### **EFR O4 (VIOOLSDRIF)** #### EIS: HIGH Highest scoring metrics are instream and riparian rare /endangered biota, unique instream and riparian biota, migration corridor, National Park. # PES: B/C Decreased frequency of large floods. Agricultural return flows and mining activities – water quality problems. Higher low flows than natural in the dry season, drought and dry periods. Decreased low flows at other times. Presence of alien fish species and barrier effects of dams. Decreased sedimentation due to lack of large floods and upstream dams. Alien vegetation. #### REC: Improved (higher) wet season base flows. Clear vegetation aliens. Control grazing and trampling. #### AEC: Increased mining with associated impacts on water quality and decreased wet season base flows. Decreased floods. Increased vegetation aliens (esp *Prosopis sp.*). Habitat loss for a large percentage of time due to decreased flows. Vegetation: Increased sedges due to increased sedimentation. | Driver
Components | PES | Trend | REC | AEC↓ | |------------------------------|--------|-------|---------------------|----------| | IHI
HYDROLOGY | D | | | | | WATER QUALITY | C/D | | C/D | D | | GEOMORPHOLOGY | С | 0 | С | С | | INSTREAM IHI | D | | | | | RIPARIAN IHI | D | | | | | Response
Components | PES | Trend | REC | AEC↓ | | FISH | С | 0 | B/C | D | | MACRO
INVERTEBRATES | С | 0 | B/C | D | | | | • | D / O | | | INSTREAM | С | 0 | B/C | D | | INSTREAM RIPARIAN VEGETATION | | | | | | RIPARIAN | С | | B/C | D | | RIPARIAN
VEGETATION | C
C | | B/C | D
C/D | #### **EFR C5 (UPPER CALEDON)** #### EIS: LOW. Highest scoring metrices are rare and endangered riparian species, instream biota taxon richness, and sensitive instream habitat (to flow changes). ### PES: C/D Grazing and trampling, bank erosion, sedimentation, exotic vegetation and fish species. #### REC:C/D $\ensuremath{\mathsf{EIS}}$ is low - provides no motivation for improvement. The problems are also all non-flow related. #### AEC ↓: D Decreased flows due to increased abstraction. Reduced dilatation - impact temperature and oxygen. Increased sedimentation (continued erosion). Habitat loss for a large percentage of time. Vegetation – increased sedges due to increased sedimentation. | Driver
Components | PES | Trend | AEC↓ | | | | | | |------------------------|-----|-------|------|--|--|--|--|--| | IHI
HYDROLOGY | A/B | | | | | | | | | WATER QUALITY | B/C | | С | | | | | | | GEOMORPHOLOGY | С | - | C/D | | | | | | | INSTREAM IHI | | B/C | | | | | | | | RIPARIAN IHI | С | | | | | | | | | Response
Components | PES | Trend | AEC↓ | | | | | | | FISH | D | 0 | Е | | | | | | | MACRO
INVERTEBRATES | С | 0 | C/D | | | | | | | INSTREAM | D | 0 | D | | | | | | | RIPARIAN
VEGETATION | С | C O C | | | | | | | | ECOSTATUS | C/D | | D | | | | | | | EIS | | LOW | | | | | | | ### **EFR C6 (LOWER CALEDON)** #### EIS: LOW The highest scoring matrices are rare and endangered riparian species. #### PES:C Sedimentation (bank erosion), significantly reduced base flows, alien fish species. #### REC:C EIS is low - provides no motivation for improvement. #### AEC ↑: B/C Bottom releases must take place during the wet season and not during low flow conditions. Low flows must be improved. No zero flows or limited duration. | Driver
Components | PES | Trend | AEC↑ | |------------------------|-----|-------|------| | IHI
HYDROLOGY | E | | | | WATER QUALITY | С | | C(+) | | GEOMORPHOLOGY | C/D | 0 | O | | INSTREAM IHI | | E | | | RIPARIAN IHI | | B/C | | | Response
Components | PES | Trend | AEC↑ | | FISH | D | 0 | С | | MACRO
INVERTEBRATES | D | 0 | O | | INSTREAM | D | 0 | O | | RIPARIAN
VEGETATION | В | 0 | В | | ECOSTATUS | С | | B/C | | EIS | | LOW | | ## EFR K7 (LOWER KRAAI) #### **EIS: MODERATE** The highest scoring matrix was unique riparian biota. #### PES: C Reduced base flows, exotic vegetation and fish species, grazing and trampling, bank erosion. #### REC: C The EIS is moderate which does not provide motivation for improvement. #### AEC√: C Increased abstraction; more frequent zero flows. Negative impact on water quality. Decrease in small floods (e.g. by an increase of dams in the tributaries). Slightly higher sedimentation in areas. #### AEC↑: B Decreased abstraction (higher base flows) and no zero flows. Improved water quality. Alien vegetation should be cleared. | Driver
Components | PES | Trend | AEC↓ | AEC↑ | | | | | | |------------------------|-----|-------|-------|------|--|--|--|--|--| | IHI
HYDROLOGY | A/B | | | | | | | | | | WATER QUALITY | B/C | | С | A/B | | | | | | | GEOMORPHOLOGY | A/B | 0 | B/C | A/B | | | | | | | INSTREAM IHI | B/C | | | | | | | | | | RIPARIAN IHI | С | | | | | | | | | | Response
Components | PES | Trend | AEC↓ | AEC↑ | | | | | | | FISH | С | 0 | D | В | | | | | | | MACRO
INVERTEBRATES | С | 0 | D | В | | | | | | | INSTREAM | С | 0 | D | В | | | | | | | RIPARIAN
VEGETATION | С | C - | | B/C | | | | | | | ECOSTATUS | С | | С | В | | | | | | | EIS | | MODI | ERATE | | | | | | | #### **EFR M8 (MOLOPO WETLANDS)** #### EIS: HIGH Wetland is a unique habitat in this dry region. Highest scoring matrix were Rare and endangered vegetation types. Unique fish and macroinvertebrate species. Critical habitat and refuge and a Proclaimed area. #### PES: C Pesticide spraying. Backup effect from poorly designed road crossings. Burning of reeds. Alien fish species. #### REC: B As the EIS is HIGH, the REC is an improvement of the PES. | Driver
Components | PES | REC | |-----------------------------------|-----|-----| | IHI
HYDROLOGY | D/E | | | WATER QUALITY | В | В | | GEOMORPHOLOGY | В | В | | Response
Components | PES | REC | | FISH | С | В | | MACRO
INVERTEBRATES | C | В | | INSTREAM | C | В | | RIPARIAN
VEGETATION | C/D | B/C | | ECOSTATUS | C/D | В | | WETLAND IHI | D | С | | LARGER WETLAND
/ MRU ECOSTATUS | С | В | The confidence in EcoClassification is provided in the Table and is based on data availability and EcoClassification where: - Data availability: Evaluation based on the adequacy of any available data for interpretation of the Ecological Category and AEC. - EcoClassification: Evaluation based on the confidence in the accuracy of the Ecological Category. The confidence score is based on a scale of 0-5 and colour coded where: 0 – 1.9: Low 2 - 3.4: Moderate 3.5 – 5: High These confidence ratings are applicable to scoring provided in this report. ### Confidence in EcoClassification | | | | | Data | availa | bility | | | | | | | EcoC | lassific | cation | | | edian | | | | |------------|-----------|----------------------|----------|------|--------|-------------------------|------------|---------|--------|-----------|----------------------|---------|------|----------|-------------------------|------------|---------|--------|--|--|--| | EFR site | Hydrology | Physico-
chemical | Geomorph | Ш | Fish | Macro-
invertebrates | Vegetation | Average | Median | Hydrology | Physico-
chemical | Geomorp | IHI | Fish | Macro-
invertebrates | Vegetation | Average | Median | | | | | 01 | 2.5 | 3.3 | 2 | 3 | 3 | 2 | 4.5 | 2.9 | 3.00 | 4 | 3 | 2.5 | 2.6 | 3 | 3 | 4 | 3.2 | 3 | | | | | 02 | 2.5 | 3.3 | 4 | 3.5 | 3 | 4 | 4.5 | 3.5 | 3.5 | 3 | 3.5 | 3.5 | 2.6 | 3 | 4 | 4 | 3.4 | 3.5 | | | | | О3 | 2 | 3 | 3 | 3.5 | 3 | 4 | 4.5 | 3.3 | 3 | 3 | 3.5 | 3 | 3 | 3.5 | 4 | 3.8 | 3.4 | 3.5 | | | | | 04 | 2 | 2.25 | 3.5 | 3.5 | 3 | 4 | 4.5 | 3.3 | 3.5 | 3 | 2.5 | 3 | 3 | 3.5 | 4 | 3.8 | 3.3 | 3 | | | | | C 5 | 2.5 | 3.5 | 2.5 | 3.5 | 3 | 2 | 4.5 | 3.1 | 3 | 2.5 | 3.5 | 3.5 | 3.5 | 4 | 3 | 3.3 | 3.3 | 3.5 | | | | | C6 | 2 | 3.8 | 3 | 3.5 | 3 | 2 | 4.5 | 3.1 | 3 | 3 | 4 | 3.5 | 3.2 | 3 | 3 | 3.7 | 3.3 | 3.2 | | | | | K7 | 4 | 3.8 | 3 | 3 | 3 | 2 | 4.5 | 3.3 | 3. | 3 | 3 | 4 | 3.5 | 3.5 | 2 | 4 | 3.3 | 3.5 | | | | | M8 | 4 | 0.5 | 1.5 | 3.5 | 3 | 4 | 4.5 | 3.4 | 3.8 | 2 | 1.9 | 3 | 3.3 | 2 | 3 | 3.4 | 2.7 | 3 | | | | The results indicate an overall moderate to high confidence. Considering that only one biophysical survey was undertaken, the confidence is higher than expected. This is probably due to the moderate to high confidence in the data availability. The only low confidence is linked to the lack of physico-chemical data at EFR M8 and the lack of available
geomorphological data. #### **ENVIRONMENTAL FLOW REQUIREMENTS** A summary of the final flow results are provided below as a percentage of the natural MAR and the volumes. ### Summary of results as a percentage of the natural MAR | EFR site | EC | Maintena
flo | ance low
ws | Drought I | ow flows | High flows | | Long term mean | | |----------|----------|-----------------|----------------|-----------|----------|------------|--------|----------------|---------| | | | (%nMAR) | МСМ | (%nMAR) | МСМ | (%nMAR) | МСМ | (% nMAR) | МСМ | | | | | | Virgin MA | Rs | | | | | | EFR O2 | PES/REC | 11.6 | 1226.55 | 4.4 | 465.24 | 5.4 | 570.98 | 15.2 | 1607.20 | | EFR O2 | AEC↓: D | 5.8 | 613.27 | 3.1 | 327.78 | 5 | 528.69 | 11.3 | 1194.83 | | | PES: C | 8.4 | 883.10 | 2.6 | 273.34 | 4.7 | 494.12 | 11.9 | 1251.06 | | EFR O3 | REC: B | 17.6 | 1850.31 | 3.4 | 157.37 | 4.7 | 494.12 | 19.2 | 2018.52 | | | AEC↓: D | 4.1 | 431.04 | 2.2 | 231.29 | 4.4 | 462.58 | 9 | 946.18 | | EFR O4 | PES: C | 6.3 | 651.11 | 0.9 | 35.16 | 4.2 | 434.07 | 8.9 | 919.82 | | LI N O4 | REC: B/C | 10.1 | 1043.85 | 1.3 | 134.36 | 4.2 | 434.07 | 12.2 | 1260.88 | | EFR site | EC | Maintena
flo | | Drought I | ow flows | High | flows | Long ter | m mean | |----------|--------------|-----------------|--------|-----------|----------|---------|--------|----------|--------| | | | (%nMAR) | МСМ | (%nMAR) | МСМ | (%nMAR) | МСМ | (% nMAR) | МСМ | | | AEC↓: D | 3.1 | 320.39 | 0.8 | 31.25 | 3.8 | 392.73 | 6.9 | 713.12 | | EFR C5 | PES/REC: C/D | 13.8 | 7.85 | 5.8 | 3.30 | 11.4 | 6.49 | 26 | 14.80 | | EFR C6 | PES/REC: D | 8.8 | 118.62 | 0.3 | 3.40 | 10.5 | 141.54 | 20.1 | 270.94 | | EFR Co | AEC↑: C | 15.5 | 208.93 | 2.2 | 29.66 | 13.1 | 176.58 | 26.1 | 351.82 | | | PES/REC: C | 11.4 | 77.81 | 0 | 0.00 | 8.4 | 57.33 | 18.1 | 123.53 | | EFR K7 | AEC†: B | 16.5 | 112.61 | 1.2 | 7.70 | 8.4 | 57.33 | 21.8 | 148.79 | | | AEC↓: D | 5.1 | 34.81 | 0 | 0.00 | 7.1 | 48.46 | 12.9 | 88.04 | The overall confidence in the results are linked to the confidence in the hydrology and hydraulics as the hydrology provides the check and balance of the results and the hydraulics convert the requirements in terms of hydraulic parameters to flow. Therefore, the following rationale is applied when determining the overall confidence: - If the hydraulics confidence is lower than the biological responses column, the hydraulics confidence becomes the overall confidence. Hydrology confidence is also considered, especially if used to guide the requirements. - If the biological confidence is lower than the hydraulics confidence, the biological confidence becomes the overall confidence. Hydrology confidence is also considered. If hydrology is used to guide requirements, than that confidence will be overriding. ### **Overall Confidence in EFR results** | Site | Hydrology | Biological responses
Low flows | Hydraulic: Low Flows | OVERALL: LOW FLOWS | COMMENT | Biophysical responses:
High flows | Hydraulics: High Flows | OVERALL: HIGH FLOWS | COMMENT | |--------|-----------|-----------------------------------|----------------------|--------------------|---|--------------------------------------|------------------------|---------------------|---| | EFR 02 | 3.5 | 2.7 | 2.5 | 2.5 | Hydraulic confidence is not high as the measured flows were all higher than the flows required. | 3.3 | 5 | 3.3 | Even though the hydraulics confidence was high, the biophysical responses was moderate and that became the overall confidence. | | EFR 03 | 2 | 3 | 2 | 2 | See above for hydraulic confidence. As
the hydraulic confidence was lower than
the biological responses, this became
the overall confidence. | 3.5 | 5 | 3.5 | Even though the hydraulics confidence was high, the biophysical responses was lower (although still high) and that became the overall confidence. | | EFR 04 | 2.6 | 3 | 2.5 | 2.5 | See above. | 2.8 | 5 | 2.8 | Even though the hydraulics confidence was high, the biophysical responses were moderate and that became the overall confidence. | | EFR C5 | 1.6 | 3.5 | 3.5 | 3.5 | The hydraulic and biological confidences are both high. | 3 | 3 | 3 | The hydraulic and biolophysical confidence are both moderate. | | EFR C6 | 2.4 | 3 | 2 | 2 | See above for hydraulic confidence. As
the hydraulic confidence was lower than
the biological responses, this became
the overall confidence. | 3 | 4 | 3 | Even though the hydraulics confidence was high, the biophysical responses were moderate and that became the overall confidence. | | EFR K7 | 2.6 | 3 | 3 | 3 | The hydraulic and biological confidences are both moderate. | 3 | 3 | | The hydraulic and biolophysical confidence are both moderate. | #### ANALYSIS OF FLOW REQUIREMENTS AT EFR M8 The EcoClassification results indicated that Ecological Importance and Sensitivity (EIS) were HIGH and therefore an improvement was required. - Mafikeng presently has water shortages and it is highly unlikely that there is any scope to decrease abstractions in order to increase flow to the wetland. - The Bosbokpark crossing causes back-up and is a mjor impact on the wetland. Increased water to the wetland will probably not have the desired effect without addressing the back-up problems. Setting flow requirements within such a modified system will serve no purpose as increased flow on its own will not improve the system due to the back-up effect of the lower crossing (Bosbokpark). In order to improve the wetland the main objectives set for EFR 8 were to revert back to a functioning wetland which can be achieved by: - Improved Phragmites cover. - Reinstatement of shallow areas with constant depth. - Cease spraying of toxic pesticides for control of Quelea quelea and reeds. An additional aim would be to achieve a greater area of wetted wetland, i.e. that some flows and dampness increased in the wetland downstream of the Bosbokpark crossing. Various hydraulic-related management scenarios were devised and were assessed to determine whether the current state of the wetland could be improved. - Scenario1: Drop crossing by 1.2m. - Scenario 2: Drop crossing by 2.2m. - Scenario 3: Drop crossing to original bed level. - Scenario 4: Present day flow with no spraying to kill reeds. - Scenario 5: Reduce present day flow by 50 %. The figure below summarises the consequences of each scenario indicating the change from PES in the Ecological Category. Based on the results in the table section of the figure, the scenarios are ranked in terms of the achievement of the REC, and if the REC is not met ranking is based on the degree to which the REC is not achieved. The ranking is depicted by means of a traffic diagram where good indicates the achievement of the REC and red indicates non-achievement. One could also view this ranking in terms of the changes from PES which is pegged in the middle of the traffic diagram. None of the scenarios achieve the REC of a B for all components. Both Sc 2 and 3 achieve an improvement to a B/C and it is felt that with the following appropriate additional measures, the REC can be achieved. - Sc 2: The construction of a fishway to connect the wetland to the upstream Molopo Eye. - Sc 3: Would require mitigation measures to address erosion and incision. The construction of a fishway to connect the wetland to the upstream Molopo Eye. Scenario 2 and 3 are similar apart from riparian vegetation which improves more under Sc 2. It is therefore ranked marginally higher than Sc 3 (Figure 23.3). Scenario 1 and 4 result in marginal improvements of the PES. Scenario 5, i.e. a decrease of flow to the wetland, will significantly drop the EC to a D/C and is therefore ranked close to the bottom of the traffic diagram. # Consequences of scenarios and ranking The conclusion is that either Scenario 2 or 3 can be implemented and considering the requirement of crossing by landowners, Scenario 2 (which will require dropping, but not removing the crossing) will probably be the preferred option. ### **RECOMMENDATIONS** The low flow confidences range from MODERATE to HIGH with only EFR C5 rated as high. This is due to high confidence hydraulics and biological response information. Even though the hydrology is low, this does not play a significant role, as flow is not the driver at this site. Hydraulics confidences range from 2 - 2.5 for EFR O2, O3, O4 and C6. The confidence can only be improved by obtaining additional low flow calibration data that at lower flows than measured during the study. The confidence in biological information is mostly moderate as only one survey was undertaken. Additional surveys in different seasons should be undertaken to refine the baseline. The high flow confidences range from MODERATE to HIGH with only EFR O3 rated as high due to high confidence hydraulics and biological response information. The hydraulic confidence at EFR C5 and K7 were moderate as flood conditions were absent at these sites during hydraulic calibration. However an improvement in hydraulic confidence alone will not improve the overall confidence and therefore the confidence in biophysical responses should also be improved by undertaking monitoring. It is strongly recommended that an Ecological Water Resources Monitoring (EWRM) programme is initiated as soon as possible. The information gathered during this study is suitable for the baseline, but if too much time relapses between the baseline and monitoring, new surveys and EcoClassification process will have to be undertaken. The table below provides a summary of the recommendations. ## Summary of recommendations required to improve confidences | EFR
sites | Low flow confidence | High flow confidence | Recommendations | |--------------
---------------------|----------------------|---| | O2 | 2.5 | 3.3 | Initiate EWRM programme. Obtain hydraulic low flow calibrations. | | О3 | 2 | 3.5 | Initiate EWRM programme.Obtain hydraulic low flow calibrations. | | O4 | 2.5 | 2.8 | Initiate EWRM programme.Obtain hydraulic low flow calibrations. | | C5 | 3.5 | 3 | Initiate EWRM programme. Obtain hydraulic high flow calibrations. | | C6 | 2 | 3 | Initiate EWRM programme. Obtain hydraulic low flow calibrations. | | K7 | 3 | 3 | Initiate EWRM programme. Obtain hydraulic low and high flow calibrations. | | M8 | | | Hydraulic confidence in the areas of the wetland that does not receive backup from the crossing was moderate (3). It is however not recommended that more hydraulic calibrations are done as it would be more cost-effective to implement the recommendation (Sc 2 - lowering the Bosbokpark crossing by 2.2 m) and monitoring the biological responses. Monitoring should include the impact on the lower wetland to determine whether the required improvements in these sections are achieved. | # **TABLE OF CONTENTS** | R | EFERE | NCES | i | |----|--------|---|-----| | Α | CKNOV | VLEDGEMENTS | ii | | E | XECUT | VE SUMMARY | iii | | T. | ABLE C | PF CONTENTS | xiv | | 1 | INTF | ODUCTION | 1 | | | 1.1 | BACKGROUND AND OBJECTIVES OF THE STUDY | | | | 1.2 | STUDY AREA AND LOCATION OF EFR SITES | 1 | | | 1.3 | OBJECTIVES OF THE EFR STUDY | 6 | | | 1.4 | DATA AVAILABILITY | 6 | | | 1.5 | THIS REPORT | 11 | | 2 | APP | ROACHES AND METHOD | 12 | | | 2.1 | ECOCLASSIFICATION | 12 | | | 2.1.1 | Process | 12 | | | 2.1.2 | General Approach | 14 | | | 2.1.3 | Ecological Importance and Sensitivity (EIS) | 15 | | | 2.2 | EFR DETERMINATION | 16 | | | 2.2.1 | High flows | 20 | | | 2.2.2 | Final flow requirements | 20 | | 3 | ECO | CLASSIFICATION: EFR O1 (HOPETOWN) | 21 | | | 3.1 | EIS RESULTS | 21 | | | 3.2 | REFERENCE CONDITIONS | 21 | | | 3.3 | PRESENT ECOLOGICAL STATE | 22 | | | 3.3.1 | EFR O1: Trend | 24 | | | 3.3.2 | EFR O1: PES causes and sources | 24 | | | 3.3.3 | EFR O1: PES EcoStatus | 27 | | | 3.4 | RECOMMENDED ECOLOGICAL CATEGORY (REC): | 27 | | | | SUMMARY OF ECOCLASSIFICATION RESULTS | | | | | Flow requirements | | | 4 | | CLASSIFICATION: EFR O2 (BOEGOEBERG) | | | | 4.1 | EIS RESULTS | 29 | | | | REFERENCE CONDITIONS | | | | 4.3 | PRESENT ECOLOGICAL STATE | 30 | | | 4.3.1 | | | | | 4.3.2 | EFR O2: PES Causes and Sources | 33 | | | 4.3.3 | | | | | | RECOMMENDED ECOLOGICAL CATEGORY (REC): | | | | | ALTERNATIVE ECOLOGICAL CATEGORY (AEC) $oldsymbol{\psi}$: | | | | | SUMMARY OF ECOCLASSIFICATION RESULTS | | | 5 | | O2 (BOEGOEBERG) – DETERMINATION OF STRESS INDICES | | | | | NDICATOR SPECIES OR GROUP | | | | 5.1.1 | | | | | 5.1.2 | 3 - p - p - p - p - p - p - p - p - p - | | | | | STRESS FLOW INDEX | | | | 5.2.1 | ' | | | | 5.2.2 | · | | | | 5.2.3 | Integrated stress curve | 41 | | 6 | EFR O2 (BOEGOEBERG) - DETERMINATION OF EFR SCENARIOS | 44 | |----|---|-----------| | | 6.1 ECOCLASSIFICATION SUMMARY OF EFR O2 | 44 | | | 6.2 HYDROLOGICAL CONSIDERATIONS | 44 | | | 6.3 LOW FLOW REQUIREMENTS (IN TERMS OF STRESS) | | | | 6.3.1 Low flow (in terms of stress) requirements | | | | 6.3.2 EFR O2 Riparian vegetation verification of low flow requirements | 46 | | | 6.3.3 Final low flow requirements | | | | 6.4 HIGH FLOW REQUIREMENTS | | | | 6.5 FINAL FLOW REQUIREMENTS | | | 7 | | | | | 7.1 EIS RESULTS | | | | 7.2 REFERENCE CONDITIONS | | | | 7.3 PRESENT ECOLOGICAL STATE | | | | 7.3.1 EFR O3: Trend | | | | 7.3.2 EFR O3: PES Causes and Sources | | | | 7.3.3 EFR O3: PES EcoStatus | | | | 7.4 RECOMMENDED ECOLOGICAL CATEGORY (REC): | | | | 7.5 ALTERNATIVE ECOLOGICAL CATEGORY (AEC↓): | | | Q | 7.6 SUMMARY OF ECOCLASSIFICATION RESULTS EFR 03 (AUGRABIES) – DETERMINATION OF STRESS INDICES | | | 0 | 8.1 INDICATOR SPECIES OR GROUP | | | | 8.1.1 Fish indicator group: Large semi - rheophilic species (BAEN) | | | | 8.1.2 Macroinvertebrate indicator group: Amphipsyche scottae | | | | 8.2 STRESS FLOW INDEX | | | | 8.2.1 Habitat response | | | | 8.2.2 Biota response | | | | 8.2.3 Integrated stress curve | | | 9 | EFR 03 (AUGRABIES) - DETERMINATION OF EFR SCENARIOS | | | | 9.1 ECOCLASSIFICATION SUMMARY OF EFR O3 | | | | 9.2 HYDROLOGICAL CONSIDERATIONS | 69 | | | 9.3 LOW FLOW REQUIREMENTS (IN TERMS OF STRESS) | 69 | | | 9.3.1 Low flow (in terms of stress) requirements | 69 | | | 9.3.2 EFR O3 Riparian vegetation verification of low flow requirements | 72 | | | 9.3.3 Final low flow requirements | | | | 9.4 HIGH FLOW REQUIREMENTS | | | | 9.5 FINAL FLOW REQUIREMENTS | | | 10 | , | | | | 10.1 EIS RESULTS | | | | 10.2 REFERENCE CONDITIONS | | | | 10.3 PRESENT ECOLOGICAL STATE | | | | 10.3.1 EFR O4: Trend | | | | 10.3.2 EFR O4: PES Causes and Sources | | | | 10.3.3 EFR O4: PES EcoStatus | | | | 10.4 RECOMMENDED ECOLOGICAL CATEGORY (REC B): | | | | 10.5 ALTERNATIVE ECOLOGICAL CATEGORY (AEC d): | | | 4. | 10.6 SUMMARY OF ECOCLASSIFICATION RESULTS | | | 1 | 1 EFR O4 (VIOOLSDRIFT) – DETERMINATION OF STRESS INDICES | 91.
91 | | 11.1.1 Fish indicator group: Large semi - rheophilic species (BAEN) | 01 | |--|-----| | 11.1.2 Macroinvertebrate indicator group: Ampipsyche scottae | | | 11.2 STRESS FLOW INDEX | | | 11.2.1 Habitat response | | | 11.2.2 Biota response | | | 11.2.3 Integrated stress curve | | | 12 EFR O4 (VIOOLSDRIF) - DETERMINATION OF EFR SCENARIOS | | | 12.1 ECOCLASSIFICATION SUMMARY OF EFR 04 | | | 12.2 HYDROLOGICAL CONSIDERATIONS | | | 12.3 LOW FLOW REQUIREMENTS (IN TERMS OF STRESS) | | | 12.3.1 Low flow (in terms of stress) requirements | | | 12.3.2 EFR O4 Riparian Vegetation and Riverine Fauna Verification of Low | | | Requirements | | | 12.3.3 Final low flow requirements | | | 12.4 HIGH FLOW REQUIREMENTS | | | 12.5 FINAL FLOW REQUIREMENTS | | | 13 ECOCLASSIFICATION: EFR C5 (UPPER CALEDON) | | | 13.1 EIS RESULTS | | | 13.2 REFERENCE CONDITIONS | | | 13.3 PRESENT ECOLOGICAL STATE | | | 13.3.1 Trend | | | 13.3.2 EFR C5: PES causes and sources | 109 | | 13.3.3 PES EcoStatus | 110 | | 13.4 RECOMMENDED ECOLOGICAL CATEGORY (REC): C/D | 111 | | 13.5 ALTERNATIVE ECOLOGICAL CATEGORY (AEC↓): D | 111 | | 13.6 SUMMARY OF ECOCLASSIFICATION RESULTS | 112 | | 14 EFR C5 (UPPER CALEDON) – DETERMINATION OF STRESS INDICES | 113 | | 14.1 INDICATOR SPECIES OR GROUP | 113 | | 14.1.1 Fish indicator group: Large semi - rheophilic species (BAEN) | | | 14.1.2 Macro invertebrate indicator group: Leptophlebiidae | 113 | | 14.2 STRESS FLOW INDEX | 113 | | 14.2.1 Habitat response | 113 | | 14.2.2 Biota response | | | 14.2.3 Integrated stress curve | | | 15 EFR C5: UPPER CALEDON - DETERMINATION OF EFR SCENARIOS | | | 15.1 ECOCLASSIFICATION SUMMARY OF EFR C5 | | | 15.2 HYDROLOGICAL CONSIDERATIONS | | | 15.3 LOW FLOW REQUIREMENTS (IN TERMS OF STRESS) | | | 15.3.1 Low flow (in terms of stress) requirements | | | 15.3.2 EFR C5 Riparian Vegetation Verification of Low Flow Requirements | | | 15.3.3 Final low flow requirements | | | 15.4 HIGH FLOW REQUIREMENTS | | | 15.5 FINAL FLOW REQUIREMENTS | | | 16 ECOCLASSIFICATION: EFR C6 (LOWER CALEDON) | | | 16.1 EIS RESULTS | | | 16.2 REFERENCE CONDITIONS | | | 16.3 PRESENT ECOLOGICAL STATE | 123 | | in a litera | コント | | 16.3.2 EFR C6: PES causes and sources | 125 | |--|-----| | 16.3.3 PES EcoStatus | 126 | | 16.4 EFR C6: REC | 127 | | 16.5 AEC个: | | | 16.6 SUMMARY OF ECOCLASSIFICATION RESULTS | | | 17 EFR C6 (LOWER CALEDON) – DETERMINATION OF STRESS INDICES | 129 | | 17.1 INDICATOR SPECIES OR GROUP | | | 17.1.1 Fish indicator group: Large semi - rheophilic species (BAEN and BKIM) | | | 17.1.2 Macro invertebrate indicator group: Hydropsychidae | | | 17.2 STRESS FLOW INDEX | | | 17.2.1 Habitat response | | | 17.2.2 Blota response | | | 18 EFR C6 (LOWER CALEDON) - DETERMINATION OF EFR SCENARIOS | | | 18.1 ECOCLASSIFICATION SUMMARY OF EFR C6 | | | 18.2 HYDROLOGICAL CONSIDERATIONS | | | 18.3 LOW FLOW REQUIREMENTS (IN TERMS OF STRESS) | | | 18.3.1 Low flow (in terms of stress) requirements | | | 18.3.2 EFR C6: Riparian Vegetation and Geomorphological Flow Requirements | | | of Low Flow Requirements | | | 18.3.3 Final low flow requirements | | | 18.4 HIGH FLOW REQUIREMENTS | | | 18.5 FINAL FLOW REQUIREMENTS | 139 | | 19 ECOCLASSIFICATION: EFR K7 (LOWER KRAAI) | 143 | | 19.1 EIS RESULTS | 143 | | 19.2 REFERENCE CONDITIONS | 143 | | 19.3 PRESENT ECOLOGICAL STATE | 143 | | 19.3.1 EFR K7: Trend | 145 | | 19.3.2 EFR K7: PES causes and sources | 145 | | 19.4 EFR K7: PES ECOSTATUS | | | 19.5 RECOMMENDED ECOLOGICAL CATEGORY (REC): C | | | 19.6 EFR K7: AEC↑ | | | 19.6.1 AEC↓ | | | 19.7 SUMMARY OF ECOCLASSIFICATION RESULTS | | | 20 EFR K7 (LOWER KRAAI) – DETERMINATION OF STRESS INDICES | 150 | | 20.1 INDICATOR SPECIES OR GROUP | | | 20.1.1 Fish indicator group: Large semi - rheophilic species | | | 20.1.2 Macroinvertebrate indicator taxa | | | 20.2 STRESS FLOW INDEX | | | 20.2.1 Habitat response | | | Biota response | | | 20.2.2 Integrated stress curve | | | 21 EFR K7 (LOWER KRAAI) - DETERMINATION OF EFR SCENARIOS | | | 21.1 ECOCLASSIFICATION SUMMARY OF EFRICATIONS | | | 21.3 LOW FLOW REQUIREMENTS (IN TERMS OF STRESS) | | | 21.3.1 Low flow (in terms of stress) requirements | | | 21.3.2 Riparian Vegetation Verification
of Low Flow Requirements | | Nov 2010 | 21.3 | 3.3 Final low flow requirements | 158 | |----------|--|-----| | 21.4 | HIGH FLOW REQUIREMENTS | 159 | | | FINAL FLOW REQUIREMENTS | | | 22 E | ECOCLASSIFICATION: EFR M8 (MOLOPO WETLANDS) | 166 | | 22.1 | EIS RESULTS | | | 22.2 | REFERENCE CONDITIONS | 167 | | 22.3 | PRESENT ECOLOGICAL STATE | 168 | | 22.3 | 3.1 EFR M8: PES causes and sources | 169 | | | PES ECOSTATUS | | | 22.5 | RECOMMENDED ECOLOGICAL CATEGORY (REC): | 170 | | 22.6 | SUMMARY OF ECOCLASSIFICATION RESULTS | 171 | | | EFR M8 (MOLOPO WETLANDS) – EVALUATION OF OPERATIONAL S | | | EFR RE | ECOMMENDATION | | | 23.1 | approach for setting efr | | | 23.2 | BOSBOKPARK ROAD CROSSING | 172 | | 23.3 | hydraulic description of the EFR 8 wetland reach | | | 23.4 | DESCRIPTION OF MANAGEMENT SCENARIOS | | | 23.5 | CONSEQUENCES OF EACH SCENARIO | | | 23. | 5.1 Wetland Index of Habitat Integrity | 175 | | 23. | 5.2 Riparian vegetation | 176 | | 23. | 5.3 Fish | 176 | | 23. | | | | | SUMMARY OF CONSEQUENCES | | | | CONCLUSIONS AND RECOMMENDATIONS | | | 24.1 | ECOCLASSIFICATION | | | 24. | | | | | 1.2 Conclusions | | | | Environmental flow requirements | | | 24.2 | | | | 24.2 | 2.2 Confidences | | | 24.2 | | | | 25 R | REFERENCES | 191 | | | LIST OF TABLES | | | Table 1. | , | | | Table 1. | • | | | Table 1. | • | | | Table 2. | .1 EIS categories (Modified from DWAF, 1999) | 16 | | Table 3. | | | | Table 3. | .2 EFR O1: Present Ecological State | 22 | | Table 3. | , | | | Table 3. | | | | Table 3. | | | | Table 3. | • | | | Table 4. | | | | Table 4. | 3 | | | Table 4. | , | | | Table 4. | .4 EFR O2: PES Causes and Sources | 34 | Assessment of Environmental Flow requirements: Volume 1: | Table 4.5 | MRU: EFR O2: Instream | 35 | |------------|--|----| | Table 4.6 | EFR O2: REC | 36 | | Table 4.7 | EFR O2: AEC↓ | 37 | | Table 4.8 | EFR O2: Summary of EcoClassification results | 38 | | Table 5.1 | Summarised habitat requirements for different life stage of the large semi-rhe indicator group. | | | Table 5.2 | EFR O2: Species stress discharges used to determine biotic stress | | | Table 5.3 | EFR O2: Integrated stress and summarised habitat/biotic responses | | | Table 6.1 | EFR O2: Species and integrated stress requirements as well as the final integr | | | | stress and flow requirement | • | | Table 6.2 | EFR O2: Summary of motivations | | | Table 6.3 | EFR O2: Verification of low flow requirements for instream biota to maintain | | | | vegetation in the required EC | • | | Table 6.4 | EFR O2: Verification of low flow requirements for instream biota to maintain | | | | fauna in the required EC | | | Table 6.5 | EFR O2: Identification of instream functions addressed by the identified flo | | | | geomorphology and riparian vegetation | | | Table 6.6 | EFR O2: The recommended number of high flow events required | | | Table 6.7 | EFR O2: EFR table for PES and REC: C | | | Table 6.8 | EFR O2: EFR table for AEC√: D | | | Table 6.9 | EFR O2: Assurance rules for PES and REC: C | | | Table 6.10 | EFR O2: Assurance rules for AEC√: D | | | Table 6.11 | EFR O2: Modifications made to the DRM | | | Table 7.1 | EFR O3: Reference conditions | | | Table 7.1 | EFR O3: Present Ecological State | | | Table 7.2 | EFR O3: Present Ecological State: Physico-Chemicalical | | | Table 7.3 | EFR O3: PES Causes and Sources | | | Table 7.4 | MRU: EFR O3: Instream | | | Table 7.5 | EFR O3 REC | | | | | | | Table 7.7 | EFR O3: AEC ↓ | | | Table 7.8 | EFR O3: Summary of EcoClassification results | | | Table 8.1 | EFR O3: Species stress discharges used to determine biotic stress | | | Table 8.2 | EFR O3: Integrated stress and summarised habitat/biotic responses | | | Table 9.1 | EFR O3: Species and integrates stress requirements as well as the final integrated in the stress requirements as well as the final integrated in the stress requirements as well as the final integrated in the stress requirements as well as the final integrated in the stress requirements as well as the final integrated in the stress requirements as well as the final integrated in the stress requirements as well as the final integrated in the stress requirements as well as req | _ | | T 11 00 | stress and flow requirement | | | Table 9.2 | EFR O3: Summary of motivations | | | Table 9.3 | EFR O3: Verification of low flow requirements for instream biota to maintain vegetation in the required EC. | • | | Table 9.4 | EFR O3: Verification of low flow requirements for instream biota to maintain | | | | fauna in the required EC | | | Table 9.5 | EFR O3: Identification of instream functions addressed by the identified flo | | | | geomorphology and riparian vegetation | | | Table 9.6. | EFR O3: The recommended number of high flow events required | | | Table 9.7 | EFR O3: EFR table for PES: C | | | Table 9.8 | EFR O3: EFR table for REC: B | | | Table 9.9 | EFR O3: EFR table for AEC√: D | | | Table 9.10 | EFR O3: Assurance rules for PES: C | | | Table 9.11 | EFR O3: Assurance rules for REC: B | | | | | | | Table 9.12 | EFR O3: Assurance rules for AEC↓: D | 81 | |-------------|--|----------| | Table 9.13 | EFR O3: Modifications made to the DRM | 81 | | Table 10.1 | EFR O4: Reference conditions | 82 | | Table 10.2 | EFR O4: Present Ecological State | 83 | | Table 10.3 | EFR O4: Present Ecological State: Physico-Chemical | 84 | | Table 10.4 | EFR O4: PES Causes and Sources | 85 | | Table 10.5 | MRU: EFR O4: Instream | 87 | | Table 10.6 | EFR O4: REC | 88 | | Table 10.7 | EFR O4: AEC | 89 | | Table 10.8 | EFR O4: Summary of EcoClassification results | 90 | | Table 11.1 | EFR O4: Species stress discharges used to determine biotic stress | | | Table 11.2 | EFR O4: Integrated stress and summarised habitat/biotic responses | | | Table 12.1 | EFR O4: Species and integrates stress requirements as well as the final in | | | | stress and flow requirement | 95 | | Table 12.2 | EFR O4: Summary of motivations | 96 | | Table 12.3 | EFR O4: Verification of low flow requirements for instream biota to maintain | ripariar | | | vegetation in the required EC | 97 | | Table 12.4 | EFR O4: Verification of low flow requirements for instream biota to maintain | riverine | | | fauna in the required EC | 97 | | Table 12.5 | EFR O4: Identification of instream functions addressed by the identified flo | | | | geomorphology and riparian vegetation | 100 | | Table 12.6 | EFR O4: The recommended number of high flow events required | 102 | | Table 12.7 | EFR O4: EFR table for PES: C | 103 | | Table 12.8 | EFR O4: EFR table for REC: B/C | 103 | | Table 12.9 | EFR O4: EFR table for AEC ↓: D | 104 | | Table 12.10 | EFR O4: Assurance rules for PES: C | 104 | | Table 12.11 | EFR O4: Assurance rules for REC: B/C | 105 | | Table 12.12 | EFR O4: Assurance rules for AEC↓: D | 106 | | Table 12.13 | EFR O4: Modifications made to the DRM | 106 | | Table 13.1 | EFR C5: Reference conditions | 107 | | Table 13.2 | EFR C5: Present Ecological State | 107 | | Table 13.3 | EFR C5: Present Ecological State: Physico-chemical variables | 108 | | Table 13.4 | EFR C5: PES causes and sources | | | Table 13.5 | MRU A/B: EFR C5: Instream | 110 | | Table 13.6 | EFR C5: AEC↓ | 111 | | Table 13.7 | EFR C5: Summary of EcoClassification results | 112 | | Table 14.1 | EFR C5: Species stress discharges used to determine biotic stress | 115 | | Table 14.2 | EFR C5: Integrated stress and summarised habitat/biotic responses | | | Table 15.1 | EFR C5: Species and integrates stress requirements as well as the final in | tegrated | | | stress and flow requirement | 117 | | Table 15.2 | EFR C5: Summary of motivations | 117 | | Table 15.3 | EFR C5: Verification of low flow requirements for instream biota to maintain | ripariar | | | vegetation in the required EC | 118 | | Table 15.4 | EFR C5: Identification of instream functions
addressed by the identified flo | ods for | | | geomorphology and riparian vegetation | | | Table 15.5 | EFR C5: The recommended number of high flow events required | 120 | | Table 15.6 | EFR C5: EFR table for PES and REC: C/D | | | Table 15.7 | EFR C5: Assurance rules for PES and REC: C/D | 121 | | Table 15.8 | EFR C5: Modifications made to the DRM | 122 | |-------------|---|---------------| | Table 16.1 | EFR C6: Reference conditions | 123 | | Table 16.2 | EFR C6: Present Ecological State | 123 | | Table 16.3 | EFR C6: Present Ecological State: Physico-chemical variables | 124 | | Table 16.4 | EFR C6: PES causes and sources | 125 | | Table 16.5 | MRU D: EFR C6: Instream | 126 | | Table 16.6 | EFR C6: AEC↑ | 127 | | Table 16.7 | EFR C6: Summary of EcoClassification results | 128 | | Table 17.1 | Summarised habitat requirements for different life stage of the large se indicator group. | - | | Table 17.2 | EFR C6: Species stress discharges used to determine biotic stress | | | Table 17.3 | EFR C6: Integrated stress and summarised habitat/biotic responses | | | Table 18.1 | EFR C6: Species and integrated stress requirements as well as the fir | | | | stress and flow requirement | - | | Table 18.2 | EFR C6: Summary of motivations | | | Table 18.3 | EFR C6: Verification of low flow requirements for instream biota to mai | | | | vegetation in the required EC | • | | Table 18.4 | EFR C6: Identification of instream functions addressed by the identification | ed floods for | | T-1-1- 40 F | geomorphology and riparian vegetation | | | Table 18.5 | EFR C6: The recommended number of high flow events required | | | Table 18.6 | EFR C6: EFR table for PES and REC: C (D Instream) | | | Table 18.7 | EFR C6: EFR table for AEC 1: C | | | Table 18.8 | EFR C6: Assurance rules for PES and REC: D | | | Table 18.9 | EFR C6: Assurance rules for AEC↑: C | | | Table 18.10 | EFR C6: Modifications made to the DRM | | | Table 19.1 | EFR K7: Reference conditions | | | Table 19.2 | EFR K7: Present Ecological State | | | Table 19.3 | EFR K7: Present Ecological State: Physico-chemical variables | | | Table 19.4 | EFR K7: PES causes and sources | | | Table 19.5 | MRU Kraai C: EFR K7: Instream | | | Table 19.6 | EFR K7: AEC↑ | | | Table 19.7 | EFR K7: AEC↓ | | | Table 19.8 | EFR K7: Summary of EcoClassification results | | | Table 20.1 | EFR K7: Species stress discharges used to determine biotic stress | | | Table 20.2 | EFR K7: Integrated stress and summarised habitat/biotic r | | | | macroinvertebrates | | | Table 21.1 | EFR K7: Species and integrates stress requirements as well as the fir | ~ | | | stress and flow requirement | | | Table 21.2 | EFR K7: Summary of motivations | | | Table 21.3 | EFR K7: Verification of low flow requirements for instream biota to mai | | | | vegetation in the required EC | | | Table 21.4 | EFR K7: Identification of instream functions addressed by the identifi | ed floods for | | | geomorphology and riparian vegetation | 159 | | Table 21.5 | EFR K7: The recommended number of high flow events required | 161 | | Table 21.6 | EFR K7: EFR table for PES and REC: C | 161 | | Table 21.7 | EFR K7: EFR table for AEC个: B | 162 | | Table 21.8 | EFR K7: EFR table for AEC↓: D | 163 | | Table 21 9 | FFR K7: Assurance rules for PFS and RFC: C | 163 | | Table 21.10 | EFR K7: Assurance rules for AEC个: B | 164 | |--------------|---|-----| | Table 21.11 | EFR K7: Assurance rules for AEC↓: D | 165 | | Table 21.12 | EFR K7: Modifications made to the DRM | 165 | | Table 22.1 | EFR M8: Reference conditions | 167 | | Table 22.2 | EFR M8: Present Ecological State | 168 | | Table 22.3 | EFR M8 Present Ecological State: Physico-Chemical | 169 | | Table 22.4 | EFR M8: PES causes and sources | | | Table 22.5 | MRU: EFR M8: Instream | 170 | | Table 22.6 | EFR M8: Summary of EcoClassification results | 171 | | Table 23.1 | Scenario assessment for the EFR site | | | Table 23.2 | Consequences of the scenarios on riparian vegetation | 176 | | Table 23.3 | Consequences of the scenarios on fish | | | Table 23.4 | Consequences of the scenarios on the macroinvertebrates | 177 | | Table 24.1 | EcoClassification Results summary | 179 | | Table 24.2 | Confidence in EcoClassification | 183 | | Table 24.4 | Natural and PD MARs of the EFR sites | 184 | | Table 24.5 | Summary of results as a percentage of the natural MAR | 184 | | Table 24.6 | Confidence in low flows for biotic responses | 185 | | Table 24.7 | Confidence in high flows | 186 | | Table 24.8 | Confidence in hydrology | 188 | | Table 24.9 | Overall Confidence in EFR results | | | Table 24.10 | Summary of recommendations required to improve confidences | 190 | | Figure 1.1 | Management Resource Units and EFR sites | 5 | | • | | | | Figure 2.1 | Flow diagram illustrating the information generated to determine the range for which the EFR will be determined | | | Figure 2.2 | EcoStatus Level 4 determination | | | Figure 2.3 | Component and integrated stress curves | | | Figure 2.4 | Stress duration curve for a D PES and REC, and C AEC up - DRY season | | | Figure 5.1 | EFR O2: Species stress discharges used to determine biotic stress | | | Figure 6.1 | EFR O2: Stress duration curve for a PES, REC and AEC | | | Figure 6.2 | EFR O2: Final stress requirements for low flows | | | Figure 8.1 | EFR O3: Species stress discharges used to determine biotic stress | | | Figure 9.1 | EFR O3: Stress duration curve for a PES, REC and AEC | | | Figure 9.2 | EFR O3: Final stress requirements for low flows | | | Figure 10.1: | Annotated maps from the Orange River Reconnaissance Study (1906-1914) | | | rigaro rotti | some useful anecdotal evidence of the morphology of the river in this reach. | | | Figure 11.1 | EFR O4: Species stress discharges used to determine biotic | | | Figure 12.1 | EFR O4: Stress duration curve for a PES, REC and AEC | | | Figure 12.2 | EFR O4: Final stress requirements for low flows | | | Figure 14.1 | EFR C5: Species stress discharges used to determine biotic stress | | | Figure 15.1 | EFR C5: Stress duration curve for a PES and REC | | | Figure 15.2 | EFR C5: Final stress requirements for low flows | | | Figure 17.1 | EFR C6: Component and integrated stress | | | Figure 18.1 | EFR C6: Stress duration curve for a PES and REC and AEC↑ | | | Figure 18.2 | EFR C6: Final stress requirements for low flows | | Assessment of Environmental Flow requirements: Volume 1: # Support to Phase 2 of ORASECOM Basin-wide IWRM Plan # Work Package WP5 | Figure 20.1 | EFR K7: Component and integrated stress curves | 151 | |-------------|---|-----| | Figure 21.1 | EFR C6: Stress duration curve for a PES and REC, AEC↑ and AEC↓ | 154 | | Figure 21.2 | EFR K7: Final stress requirements for low flows | 159 | | Figure 22.1 | Google Earth image of EFR 8 (Molopo wetland) | 166 | | Figure 23.1 | Plan view of study sites, cross-sections and crossings | 173 | | Figure 23.2 | Description of Scenario 1 to 5 and the implications on the size of pooled areas | 175 | | Figure 23.3 | Consequences of scenarios and ranking | 178 | ### **TERMINOLOGY AND ACRONYMS** AEC Alternative ecological category AMOS Anguilla mossambica (peters 1852) ASCL Austroglanis sclateri BAEN Labeobarbus aeneus BANO Barbus anoplus (weber, 1897) BBM Building Block Methodology BBRI(cf.) Barbus brevipinnis (jubb, 1966) BHOS Barbus hospes (barnard, 1938) BKIM Barbus kimberleyensis BPAL Barbus pallidus (smith, 1841) BPAU Barbus paludinosus (peters, 1852) BTRI Barbus trimaculatus (peters, 1852) CAUR* Carassius auratus (linnaeus, 1758) CCAR* Cyprinus carpio linnaeus, 1758 CGAR Clarias gariepinus (burchell, 1822) CIDE* Ctenopharyngodon idella (valenciennes, 1844) DRIFT Downstream Response to Imposed Flow Transformation DRM Desktop reserve model DWA Department of Water Affairs DWAF Department of Water Affairs and Forestry EC Ecological Category EcoSpecs Ecological Specifications EFR Environmental Flow Requirements EIS Ecological Importance and Sensitivity EFR Ecological Flow Requirements FD Fast Deep FDI Flow dependent invertebrates FRAI Fish Response Assessment Index FROC Fish frequency of occurrence FS Fast shallow GAFF* Gambusia affinis (baird & girard, 1853) GAI Geomorphological Driver Assessment Index geom geomorphology geozone Geomorphological zone G&S Goods & Services HFSR Habitat Flow Stressor Response IERM Intermediate Ecological Reserve Methodology IFR Instream Flow Requirements IHI Index of Habitat Integrity IUCN International Union for Conservation of Nature LCAP Labeo capensis LB Left bank LMAC* Lepomis macrochirus (rafinesque, 1819) LSR Large semi-rheophilic LUMB Labeo umbratus (smith, 1841) MAR Mean Annual Runoff MAP Mean Annual Precipitation MBRE Mesobola brevianalis (boulenger, 1908) MCB Macro channel bank MIRAI Macroinvertebrate Response Assessment Index MRU Management Resource Units MSAL* Micropterus salmoides nMAR Natural mean annual runoff OMOS Oreochromis mossambicus OMYK* Oncorhynchus mykiss (walbaum, 1792) ORASECOM Orange-Senqu River Commission PAI Physico Chemicalical Driver Assessment Index PES Present Ecological State PPHI Pseudocrenilabrus philander (weber, 1897) PQUA Pseudobarbus quathlambae (barnard, 1938) Q Discharge quat quaternary catchment RB right bank REC Recommended Ecological Category Rip Veg Riparian vegetation RU Resource Unit SANBI South African National Biodiversity Institute SD Slow Deep SPATSIM Spatial and Time Series Information Modelling spspeciesSSSlow ShallowSTRU*Salmo trutta TPC Threshold of Potential Concern TSPA Tilapia sparrmanii smith, 1840 VEGRAI Riparian Vegetation Response Assessment Index WMA Water Management Area ## 1 INTRODUCTION #### 1.1 BACKGROUND AND OBJECTIVES OF THE STUDY This work forms part of the following study: Support to
Phase II ORASECOM basin wide integrated water resources management plan. The main objective of the Work Package 5 (Environmental Flow requirements (EFR)), according to the TOR, is to assess EFRs at selected key areas of the Orange River Basin at an Intermediate Level (DWA RSA criteria). An intermediate level implies specific steps, of which the following are relevant for this study: - A scoping (Desktop) level assessment of ecological and socio-cultural condition and importance across the basin. - Delineation into Management Resource Units and selection of EFR sites. - One biophysical survey to collect the relevant data at each EFR site. - Two measurements at a low and a high flow to calibrate the hydraulic model. - Assessment of the Present Ecological State and other scenarios in terms of ecological state. - Assessment of flow requirements following a holistic approach, preferably those developed specifically for Southern African conditions for each ecological state. - Assessment of the ecosystem services, also referred to as Goods and Services (G&S) - Monitoring aspects. This report focuses on the results of the study associated with the bold bullets above. The scoping study (Louw *et al*, 2010) provides the 'hotspots' which indicate the areas where detailed information, i.e. in this case, detailed EFR studies will be required. The main rivers within these areas are then selected and delineated into Management Resource Units (Resource Unit Report). These Resource Units indicate an area for which an EFR will be relevant. This means that theoretically, each Resource Unit will require an EFR site where EFRs are determined. The number of EFR sites is however constrained by time, budget and suitability of sites for EFR determination (Resource Unit Report). Once this information is available, field information is collated at the EFR sites and hydrology is produced for the sites. This leads to the determination of the EcoClassification of the EFR sites and the setting of flow regimes to maintain different ecological states. ### 1.2 STUDY AREA AND LOCATION OF EFR SITES The focus on the EFR determination was on the following rivers: - Orange River downstream of Vanderkloof Dam - Caledon River - Kraai River - Upper Molopo River The locality of the EFR sites within the MRUs as identified during this study is provided in Table 1.1 and 1.2 and in Figure 1.1. Assessment of Environmental Flow requirements: Volume 1: Table 1.1 Locality and characteristics of EFR sites | EFR site
number | EFR site
name | River | Decimal
degrees S | Decimal
degrees E | EcoRegion
(Level II) | Geozone | Altitude
(m) | MRU | Quat | Gauge | |--------------------|-------------------|---------|----------------------|----------------------|-------------------------|--------------------|-----------------|--------------------------|------|------------------| | EFR O1 | Hopetown | Orange | -29.516 | 24.00927 | 26.01 | Lowland | 1060 | MRU Orange
B | D33G | | | EFR O2 | Boegoeberg | Orange | -29.0055 | 22.16225 | 26.05 | Lowland | 871 | MRU Orange
D, RAU D.1 | D73C | D7H008 | | EFR O3 | Augrabies | Orange | -28.4287 | 19.9983 | 28.01 | Lowland | | MRU Orange
E | D81B | D7H014 | | EFR O4 | Vioolsdrif | Orange | -28.7553 | 17.71696 | 28.01 | Lowland | 167 | MRU Orange F | D82F | D8H003
D8H013 | | EFR C5 | Upper Caledon | Caledon | -28.6508 | 28.3875 | 15.03 | Lower
Foothills | 1640 | MRU Caledon
A/B | D21A | | | EFR C6 | Lower Caledon | Caledon | -30.4523 | 26.27088 | 26.03 | Lowland | 1270 | MRU Caledon
D | D24J | | | EFR K7 | Lower Kraai | Kraai | -30.8306 | 26.92056 | 26.03 | Lowland | 1327 | MRU Kraai C | D31M | D1H011 | | EFR M8 | Molopo
Wetland | Molopo | -25.8812 | 26.01592 | 11.01 | Lower
Foothills | 1459 | MRU UM C | D41A | D4H030
D4H014 | Table 1.2 Locality, characteristics and view of EFR sites | Site information | EFR sites | Illustration | |--|---|--------------| | EFR nr & name River Previous IFR site National RHP site Decimal Degrees EcoRegion (Level II) Geozone Altitude (m) RU Quaternary Farm name Hydrological gauge | EFR O1 Hopetown
Orange
-
-29.51594, 24.00927
26.01
Lowland
1060
MRU Orange B
D33G
Zuurgat 82 | | | EFR nr & name River Previous IFR site National RHP site Decimal Degrees EcoRegion (Level II) Geozone Altitude (m) RU Quaternary Farm name Hydrological gauge | EFR O2 Boegoeberg
Orange
-
-29.0055, 22.16225
26.05
Lowland
871
MRU Orange D, RAU D.1
D73C
Blinkfontein 10
D7H008 | | | Site information | EFR sites | IIIaiwalian | |--|--|--------------| | EFR nr & name River Previous IFR site National RHP site Decimal Degrees EcoRegion (Level II) Geozone Altitude (m) RU Quaternary Farm name Hydrological gauge | EFR O3 Augrabies Orange28.42867, 19.9983 28.01 Lowland 434 MRU Orange E D81B Oranjestroom 386 D7H014 | Illustration | | EFR nr & name River Previous IFR site National RHP site Decimal Degrees EcoRegion (Level II) Geozone Altitude (m) RU Quaternary Farm name Hydrological gauge | EFR O4 Vioolsdrift
Orange
-
-28.75525, 17.71696
28.01
Lowland
167
MRU Orange F
D82F
-
D8H013 | | | EFR nr & name River Previous IFR site National RHP site Decimal Degrees EcoRegion (Level II) Geozone Altitude (m) RU Quaternary Farm name Hydrological gauge | EFR C5 Caledon Rapid III28.65078, 28.3875 15.03 Lower Foothills 1640 MRU Caledon B D21A Kromdraai 106 - | | | EFR nr & name River Previous IFR site National RHP site Decimal Degrees EcoRegion (Level II) Geozone Altitude (m) RU Quaternary Farm name Hydrological gauge | EFR C6 Lower Caledon
Caledon
-
D2Cale_Tusse
-30.4523, 26.27088
26.03
Lowland
1270
MRU CaledonD
D24J
Inhoek 336 | | | Site information | EFR sites | Illustration | |--|--|--------------| | EFR nr & name River Previous IFR site National RHP site Decimal Degrees EcoRegion (Level II) Geozone Altitude (m) RU Quaternary Farm name Hydrological gauge | EFR K7 Kraai
Kraai
-
-
-30.8306, 26.92056
26.03
Lowland
1327
MRU Kraai C
D31M
Witkoppies 96/2
D1H011 | | | EFR nr & name River Previous IFR site National RHP site Decimal Degrees EcoRegion (Level II) Geozone Altitude (m) RU Quaternary Farm name Hydrological gauge | EFR M8 Molopo Wetland
Molopo
-
-25.8812, 26.01592
11.01
Lower Foothills
1459
MRU UM C
D41A
Trekdrift 360.29
D4H030, D4H014 | | The locality of sites is illustrated in Figure 1.1. Figure 1.1 Management Resource Units and EFR sites ## 1.3 OBJECTIVES OF THE EFR STUDY The objectives of the study are to determine the EFR for different ecological state at each EFR site. ## 1.4 DATA AVAILABILITY Information collated during physical surveys was used to provide the results in this report. This data availability is summarised in Table 1.1. Table 1.3 Availability of data for each EFR site | Component | Data Availability | Confidence | | | | | |---------------------|---|------------|--|--|--|--| | | O1 HOPETOWN | | | | | | | Hydrology | Hydrology provided by WRP | 2.5 | | | | | | Diatoms | No data were available for the EFR site specifically except one sample taken during 2010 EFR site visit. Diatom sample collection during 2008 and 2009 US and DS of site was available along with <i>in situ</i> water quality data. | 3 | | | | | | Water Quality | RC: Orange River @ Marksdrift (D33K; ecoregion II: 26.01) | RC: 3 | | | | | | | D3H008Q01 (1966 – 1978; n=51) PES: 1) Orange River @ Marksdrift (D33K; ecoregion II: 26.01) D3H008Q01 (2000 – 2010; n=414-427) 2) Data from diatom sample collection in 2008 (n=2) | PES: 3.5 | | | | | | Geomorphology | A historical aerial photographic record dating back to the 1950's, and coarse scale map from 1905, was available for this site and these data were used to assess the Reference conditions of the site. The nearest gauge is 70km downstream, but this is broadly representative of the flows at the site. Confidence in the site assessment is low because site visit was rapid, and hydrological data are not clear (sub-daily data needed to assess the impact of peaking at the site, and this is not available). | 2 | | | | | | Fish | Single site visits and fish sampling during June 2010. Various previous fish surveys in region. Atlas of Southern African Freshwater fishes (Scott <i>et al.</i> , 2006). SAIAB Data base (2006). Reference Fish Frequency of Occurrence Report (Kleynhans <i>et al.</i> , 2007) | 3 | | | | | | Macroinvertebrates | Low. One SASS5 survey was used to determine PES: 2010/06/02
 2 | | | | | | Riparian Vegetation | Satellite images (Google earth) of the respective reach and aerial photos (1906 (map), 1955, 1959, 1968, 1974, 1976, 1978, 1988, 2008). Hydrology specialist questionnaire Ecoregion class and associated information Geomorphic Zone classification and GAI IHI segments / impacts Biomes and vegetation types of South Africa: (Rutherford & Westfall, 1986; van Wyk & van Wyk, 1997; Mucina & Rutherford, 2006) SANBI Plant of Southern Africa online database (based on several herbaria collections). Data collected during field visit (June 2010). | 4.5 | | | | | | Riverine Fauna | 1 site visit | 2 | | | | | | | Terrestrial habitat survey (rapid) Site photos | | | | | | | | O2 BOEGOEBERG | | | | | | | Hydrology | Hydrology provided by WRP
Observed data from D7H008 | 3.5 | | | | | | Diatoms | Site specific diatom data were available from sample collection during 2005, 2008 – 2009 as well as data from sample collected during EFR site visit. Diatoms were taken during 2005, 2008 - 2009 across the reach, along with measured <i>in situ</i> water quality measurements. | 3.5 | | | | | | Water Quality | RC: Orange River @ Boegoeberg Reserve (D73B; ecoregion II: 26.05) | RC: 3 | | | | | | · | D7H008Q01 (1966 – 1979; n=43 - 57) PES: 1) Orange River @ Boegoeberg Reserve (D73B; ecoregion II: 26.05) D7H008Q01 (2000 – 2009; n=348) | PES: 3.5 | | | | | | Component | Data Availability | Confidence | |---------------------|---|---------------------| | | 2) Data from diatom sample collection in 2005, 2008, 2009, 2010 | | | Geomorphology | Historical aerial photographic record dating back to the 1930's was available for this site and these data were used to assess the Reference conditions of the site. The nearest gauge is at the nearby Boegoeberg Dam and has a very long record from the 1930's. Confidence in the site assessment is thus high because the hydrological data and aerial photography have very long records. | 4 | | Fish | Single site visits and fish sampling during June 2010. Various previous fish surveys in region. Atlas of Southern African Freshwater fishes (Scott <i>et al.</i> , 2006). SAIAB Data base (2006). Reference Fish Frequency of Occurrence Report (Kleynhans <i>et al.</i> , 2007) | 3 | | Macroinvertebrates | Good. One SASS5 survey was collected during the present study (2010-05-31), but additional data were collected by the Onderstepoort Veterinary Institute as part of the Orange River Blackfly Control Programme between 1991 and 1996 (Palmer 1996, 1997a, b). | 4 | | Riparian vegetation | Satellite images (Google earth) of the respective reach and aerial photos (1964, 1974, 1984, 2004, 2010). Hydraulic cross-section (profile) at the site together with surveyed key vegetation points Hydrology specialist questionnaire Ecoregion class and associated information Geomorphic Zone classification and GAI IHI segments / impacts Biomes and vegetation types of South Africa: (Rutherford & Westfall, 1986; van Wyk & van Wyk, 1997; Mucina & Rutherford, 2006) SANBI Plant of Southern Africa online database (based on several herbaria collections). Data collected during field visit (June 2010). | 4.5 | | Riverine Fauna | 1 site visit Terrestrial habitat survey (rapid) Site photos | 2 | | | O3 AUGRABIES | 1 - | | Hydrology | Hydrology provided by WRP | 2 | | Diatoms | No data were available for EFR site specifically except one sample taken during 2010 EFR site visit. Diatom sample collection during 2008 and 2009 US and DS of site was available along with <i>in situ</i> water quality data. | 3 | | Water Quality | RC: Orange River @ Kakamas (D73F; ecoregion II: 26.05) D7H003Q01 (1965 – 1980; n=68) PES: 1) Orange River @ Neusberg (D73F; ecoregion II: 26.05) D7H014Q01 (1995 – 2010; n=94) 2) Data from diatom sample collection in 2008 (n=7) | RC: 2.5
PES: 3.5 | | Geomorphology | A historical aerial photographic record dating back to the 1940's was available for this site. This documents gross morphological changes to the site and aids in the Reference State and PES determinations and assessments. The nearest discharge gauge (D7H014) is 80kms upstream of the site, but this has a relatively short record (starting in 1993). The D8H004 gauge is approximately 85kms downstream and this record starts in 1971 and runs to 2010. This latter gauge was utilised to represent flows at the site since there are few significant tributaries and the record is much longer and therefore better able to represent long term flow conditions. | 3 | | Fish | Single site visits and fish sampling during June 2010. Various previous fish surveys in region. Atlas of Southern African Freshwater fishes (Scott et al., 2006). SAIAB Data base (2006). Reference Fish Frequency of Occurrence Report (Kleynhans et al., 2007) | 3 | | Macroinvertebrates | Good. One SASS5 survey was collected during the present study (2010.05.29), but additional data were collected by the Onderstepoort Veterinary Institute as part of the Orange River Blackfly Control Programme between 1991 and 1996 (Palmer 1996, 1997a, b). | 4 | | Riparian vegetation | Satellite images (Google earth) of the respective reach and aerial photos (1941, 1962, 1967, 1969, 1976, 2008). Hydraulic cross-section (profile) at the site together with surveyed key vegetation points Hydrology specialist questionnaire | 4.5 | Assessment of Environmental Flow requirements: Volume 1: | Component | Data Availability | Confidence | |---------------------|---|------------| | | Ecoregion class and associated information | | | | Geomorphic Zone classification and GAI | | | | IHI segments / impacts | | | | Biomes and vegetation types of South Africa: (Rutherford & Westfall, | | | | 1986; van Wyk & van Wyk, 1997; Mucina & Rutherford, 2006) | | | | SANBI Plant of Southern Africa online database (based on several herbaria collections). | | | | Data collected during field visit (June 2010). | | | Riverine Fauna | 1 site visit | 2 | | Tilverine i adna | Terrestrial habitat survey (rapid) | _ | | | Site photos | | | | O4 VIOOLSDRIFT | | | Hydrology | Hydrology provided by WRP | 3 | | | Observed data from D8H003/13 | | | Diatoms | Site specific diatom data were available from sample collection during | | | | 2008 – 2009 as well as data from sample collected during EFR site visit. | 3.5 | | | Three diatom samples were taken during 2005, 2008 - 2009 across the | 0.0 | | | reach, along with measured in situ water quality measurements. | | | Water Quality | RC: Orange River @ Korridor Brand Kaross (D82L; ecoregion II: 25.03) | 2 | | | D8H007Q01 (1980; n=35) | | | | PES: 1) Orange River @ Oppenheimer Bridge, Alexander Bay (D82L; | 0.5 | | | ecoregion II: 25.03) | 2.5 | | | D8H012Q01 (1995 – 2003; n=263) 2) Data from diatom sample collection in 2008 (n=9) | | | Coomerabeleau | | | | Geomorphology | A historical aerial photographic record dating back to the 1930's was available for this site, as well as anecdotal descriptions of the river reach | | | | from the Orange River Reconnaissance Study that was conducted in the | | | | early 1900's. These data document gross morphological changes to the | | | | site and reach and aid in the Reference State and PES determinations | 3.5 | | | and assessments. | | | | The D8H003 gauge was used to represent flows at the site, since this | | | | gauge provides a long discharge record beginning in 1935. | | | Fish | Single site visits and fish sampling during June 2010. | | | | Various previous fish surveys in region. | | | | Atlas of Southern African Freshwater fishes (Scott et al., 2006). | 3 | | | SAIAB Data base (2006). | | | | Reference Fish Frequency of Occurrence Report (Kleynhans et al., 2007) | | | Macroinvertebrates | Good. One SASS5 survey was collected during the present study | 4 | | | (2010.05.26), but additional data were collected by the Onderstepoort | | | | Veterinary Institute as part of the Orange River Blackfly Control | | | | Programme between 1991 and 1996 (Palmer 1996, 1997a, b). | | | | Reference conditions were based on professional judgment and data | | | | collected in the catchment by Niehaus and Kotze (2003), and Marie | | | Riparian vegetation | Watson (unpublished data Satellite images (Google earth) of the respective reach and aerial photos | 4.5 | | niparian vegetation | (1937, 1961, 1964, 1969, 1976, 1978, 1989, 2006). | 4.0 | | | Hydraulic cross-section (profile) at the site together with surveyed key | | | | vegetation points | | | | Hydrology specialist questionnaire | | | | Ecoregion class and associated information | | | | Geomorphic Zone classification and GAI | | | | IHI segments / impacts | | | | Biomes and vegetation types of South Africa: (Rutherford & Westfall, | | | | 1986; van Wyk & van Wyk, 1997; Mucina & Rutherford, 2006) | | | | SANBI Plant of Southern Africa online database (based on several | | | | herbaria collections). | | | Riverine Fauna | 1 site visit | 2 | | | Terrestrial habitat survey (rapid) | | | | Site photos | | | Lludus la err | C5 UPPER CAELDON | 0.5 | | Hydrology | Hydrology provided by WRP | 2.5 | | Diatoms | No data were available for the EFR site specifically except one sample | | | | taken during 2010 EFR site visit. Good
information available from diatom | 3.5 | | | sample collection during 2008 and 2009 across the reach and tributaries, along with <i>in situ</i> water quality measurements. | | | | RC: Little Caledon River @ Caledonspoort (D21C; ecoregion II: 15.03). | RC: 4 | | Water Quality | | | | Component | Data Availability | Confidence | |---|---|------------| | | PES: 1) Little Caledon River @ Caledonspoort (D21C; ecoregion II: | DE0 6 | | | 15.03). D2H012Q01 (2002 – 2010; n=47/48). | PES: 3 | | 0 | 2) Data from diatom sample collection in 2008 + 2009 | 0.5 | | Geomorphology | A historical aerial photographic record dating back to the 1960's was available for this site, and exposed cut banks at the site document | 2.5 | | | Reference and subsequent sediment characteristics of the site. | | | | The nearest gauge is 60km downstream – too far to represent flows at the | | | | site (more than 5 times the size of the catchment at the EFR site). | | | Fish | Single site visits and fish sampling during June 2010. | | | | Limited fish surveys in region (for Rapid Reserve Determinations and | | | ļ | EIA's). | 3 | | ļ | Atlas of Southern African Freshwater fishes (Scott et al., 2006). | 3 | | | SAIAB Data base (2006). | | | | Reference Fish Frequency of Occurrence Report (Kleynhans et al., 2007) | _ | | Macroinvertebrates | Low. One SASS5 survey was used to determine PES: 2010/06/22 | 2 | | Riparian Vegetation | Satellite images (Google earth) of the respective reach and aerial photos | 4.5 | | | (1964, 1974, 1984, 2004, 2010). | | | | Hydraulic cross-section (profile) at the site together with surveyed key | | | | vegetation points Hydrology specialist questionnaire | | | ļ | Ecoregion class and associated information | | | | Geomorphic Zone classification and GAI | | | | IHI segments / impacts | | | | Biomes and vegetation types of South Africa: (Rutherford & Westfall, | | | | 1986; van Wyk & van Wyk, 1997; Mucina & Rutherford, 2006) | | | | SANBI Plant of Southern Africa online database (based on several | | | | herbaria collections). | | | | Data collected during field visit (June 2010). | | | | C6 LOWER CALEDON | | | Hydrology | Hydrology provided by WRP | 2 | | Diatoms | No data were available for the EFR site specifically except one sample | 0 | | ļ | taken during 2010 EFR site visit. Fewer samples taken during 2008 – 2009 across the reach than EFR C5. | 3 | | Water Quality | RC: Caledon River @ Jammerdrift (D23G; ecoregion II: 11.03) | RC: 3.5 | | Water Quality | D2H001Q01 (1976 – 1979; n=92). | no. 3.5 | | | PES: 1) Caledon River @ Kommissiedrift (D24G; ecoregion II: 11.10). | | | | D2H036Q01 (2000 – 2010; n=90-96). | PES: 4 | | | 2) Weldam Raw (Bloem Water intake: labelled BW on Table 5.3) (D23J; | | | | ecoregion II: 11.03). (2001 – 2010; n=230. | | | | 3) Data from Slabbert (2007). | | | Geomorphology | A long historical aerial photographic record dating back to the 1940's was | 3 | | | available for this site. | | | | The nearest gauge upstream at Welbedacht Dam – too far to represent | | | Fish | flows directly at the site. Single site visits and fish sampling during June 2010. | | | 1 1011 | Limited fish surveys in region (for Rapid Reserve Determinations and | | | | Ella's). | | | | Atlas of Southern African Freshwater fishes (Scott et al., 2006). | 3 | | | SAIAB Data base (2006). | | | | · | | | | Reference Fish Frequency of Occurrence Report (Kleynhans et al., 2007) | | | Macroinvertebrates | Low. One SASS5 survey was used to determine PES: 2010/06/23 | 2 | | Macroinvertebrates | Low. One SASS5 survey was used to determine PES: 2010/06/23
Reference conditions were based on professional judgment and data | 2 | | Macroinvertebrates | Low. One SASS5 survey was used to determine PES: 2010/06/23
Reference conditions were based on professional judgment and data
collected in the catchment by Niehaus and Kotze (2003), and Marie | 2 | | | Low. One SASS5 survey was used to determine PES: 2010/06/23 Reference conditions were based on professional judgment and data collected in the catchment by Niehaus and Kotze (2003), and Marie Watson (unpublished data). | | | Macroinvertebrates Riparian vegetation | Low. One SASS5 survey was used to determine PES: 2010/06/23 Reference conditions were based on professional judgment and data collected in the catchment by Niehaus and Kotze (2003), and Marie Watson (unpublished data). Satellite images (Google earth) of the respective reach and aerial photos | 4.5 | | | Low. One SASS5 survey was used to determine PES: 2010/06/23 Reference conditions were based on professional judgment and data collected in the catchment by Niehaus and Kotze (2003), and Marie Watson (unpublished data). Satellite images (Google earth) of the respective reach and aerial photos (1944, 1951, 1969, 1974, 2008). | | | | Low. One SASS5 survey was used to determine PES: 2010/06/23 Reference conditions were based on professional judgment and data collected in the catchment by Niehaus and Kotze (2003), and Marie Watson (unpublished data). Satellite images (Google earth) of the respective reach and aerial photos (1944, 1951, 1969, 1974, 2008). Hydraulic cross-section (profile) at the site together with surveyed key | | | | Low. One SASS5 survey was used to determine PES: 2010/06/23 Reference conditions were based on professional judgment and data collected in the catchment by Niehaus and Kotze (2003), and Marie Watson (unpublished data). Satellite images (Google earth) of the respective reach and aerial photos (1944, 1951, 1969, 1974, 2008). | | | | Low. One SASS5 survey was used to determine PES: 2010/06/23 Reference conditions were based on professional judgment and data collected in the catchment by Niehaus and Kotze (2003), and Marie Watson (unpublished data). Satellite images (Google earth) of the respective reach and aerial photos (1944, 1951, 1969, 1974, 2008). Hydraulic cross-section (profile) at the site together with surveyed key vegetation points Hydrology specialist questionnaire Ecoregion class and associated information | | | | Low. One SASS5 survey was used to determine PES: 2010/06/23 Reference conditions were based on professional judgment and data collected in the catchment by Niehaus and Kotze (2003), and Marie Watson (unpublished data). Satellite images (Google earth) of the respective reach and aerial photos (1944, 1951, 1969, 1974, 2008). Hydraulic cross-section (profile) at the site together with surveyed key vegetation points Hydrology specialist questionnaire Ecoregion class and associated information Geomorphic Zone classification and GAI | | | | Low. One SASS5 survey was used to determine PES: 2010/06/23 Reference conditions were based on professional judgment and data collected in the catchment by Niehaus and Kotze (2003), and Marie Watson (unpublished data). Satellite images (Google earth) of the respective reach and aerial photos (1944, 1951, 1969, 1974, 2008). Hydraulic cross-section (profile) at the site together with surveyed key vegetation points Hydrology specialist questionnaire Ecoregion class and associated information Geomorphic Zone classification and GAI IHI segments / impacts | | | | Low. One SASS5 survey was used to determine PES: 2010/06/23 Reference conditions were based on professional judgment and data collected in the catchment by Niehaus and Kotze (2003), and Marie Watson (unpublished data). Satellite images (Google earth) of the respective reach and aerial photos (1944, 1951, 1969, 1974, 2008). Hydraulic cross-section (profile) at the site together with surveyed key vegetation points Hydrology specialist questionnaire Ecoregion class and associated information Geomorphic Zone classification and GAI IHI segments / impacts Biomes and vegetation types of South Africa: (Rutherford & Westfall, | | | | Low. One SASS5 survey was used to determine PES: 2010/06/23 Reference conditions were based on professional judgment and data collected in the catchment by Niehaus and Kotze (2003), and Marie Watson (unpublished data). Satellite images (Google earth) of the respective reach and aerial photos (1944, 1951, 1969, 1974, 2008). Hydraulic cross-section (profile) at the site together with surveyed key vegetation points Hydrology specialist questionnaire Ecoregion class and associated information Geomorphic Zone classification and GAI IHI segments / impacts Biomes and vegetation types of South Africa: (Rutherford & Westfall, 1986; van Wyk & van Wyk, 1997; Mucina & Rutherford, 2006) | | | | Low. One SASS5 survey was used to determine PES: 2010/06/23 Reference conditions were based on professional judgment and data collected in the catchment by Niehaus and Kotze (2003), and Marie Watson (unpublished data). Satellite images (Google earth) of the respective reach and aerial photos (1944, 1951, 1969, 1974, 2008). Hydraulic cross-section (profile) at the site together with surveyed key vegetation points Hydrology specialist questionnaire Ecoregion class and associated information Geomorphic Zone classification and GAI IHI segments / impacts Biomes and vegetation types of South Africa: (Rutherford & Westfall, 1986; van Wyk & van Wyk, 1997; Mucina & Rutherford, 2006) SANBI Plant of Southern Africa online
database (based on several | | | | Low. One SASS5 survey was used to determine PES: 2010/06/23 Reference conditions were based on professional judgment and data collected in the catchment by Niehaus and Kotze (2003), and Marie Watson (unpublished data). Satellite images (Google earth) of the respective reach and aerial photos (1944, 1951, 1969, 1974, 2008). Hydraulic cross-section (profile) at the site together with surveyed key vegetation points Hydrology specialist questionnaire Ecoregion class and associated information Geomorphic Zone classification and GAI IHI segments / impacts Biomes and vegetation types of South Africa: (Rutherford & Westfall, 1986; van Wyk & van Wyk, 1997; Mucina & Rutherford, 2006) | | Assessment of Environmental Flow requirements: Volume 1: | Component | Data Availability | Confidence | |---------------------|---|------------| | Hydrology | Hydrology provided by WRP | 5 | | Diotomo | Observed data from D1H011 | | | Diatoms | No data were available for the EFR site specifically except one sample taken during 2010 EFR site visit. Diatom sample collection during 2008 | | | | and 2009 US and DS of site was available along with in situ water quality | 3 | | Matax Ovality | data. | DC: 0.5 | | Water Quality | RC: Kraai River @ Roodewal (D13L; ecoregion II: 26.03). D1H011Q01 (1974 – 1977; n=80). | RC: 3.5 | | | PES: | | | | 1) Kraai River @ Roodewal (D13L; ecoregion II: 26.03). | PES: 4 | | | D1H011Q01 (2000 – 2010; n=64-66). 2) Data from diatom sample collection in 2008 + 2009. | | | Geomorphology | A historical aerial photographic record dating back to the 1960's was | 3 | | | available for this site. | | | | A good and relatively reliable, long hydrological record is available from a gauge at the site. | | | Fish | Single site visits and fish sampling during June 2010. | | | | Limited fish surveys in region. | | | | Atlas of Southern African Freshwater fishes (Scott <i>et al.</i> , 2006). | 3 | | | SAIAB Data base (2006). Reference Fish Frequency of Occurrence Report (Kleynhans <i>et al.</i> , 2007) | | | Macroinvertebrates | Low. One SASS5 survey was used to determine PES: 2010/06/24 | 2 | | Riparian vegetation | Satellite images (Google earth) of the respective reach and aerial photos | 4.5 | | | (1969, 1974, 1987, 2008). | | | | Hydraulic cross-section (profile) at the site together with surveyed key | | | | vegetation points Hydrology specialist questionnaire | | | | Ecoregion class and associated information | | | | Geomorphic Zone classification and GAI | | | | IHI segments / impacts Biomes and vegetation types of South Africa: (Rutherford & Westfall, | | | | 1986; van Wyk & van Wyk, 1997; Mucina & Rutherford, 2006) | | | | SANBI Plant of Southern Africa online database (based on several | | | | herbaria collections). | | | | Data collected during field visit (June 2010). M8 MOLOPO WETLAND | | | Hydrology | Hydrology provided by WRP | 5 | | , 0, | Observed data from D4H030/14 | | | Diatoms | Diatom data collected during 2005 as part of a PhD study (De la Rey, | 0 | | | 2008). Diatoms at four RHP sites were sampled during May, July and September 2005. The EFR site was sampled during April 2010. | 2 | | Water Quality | No data available. | n/a | | Wetland Condition | A historical aerial photographic record dating back to the 1940's was | | | | available for this site, and previous work on the Molopo close to Mafikeng | | | | had confirmed the historic extent of seasonal to permanent wetland areas. | 1.5 | | | Hydraulics and hydrological behaviour of the wetland system is complex, | | | | and this reduces confidence in the assessment. | | | Fish | Single site visits and fish sampling during June 2010. Limited fish surveys | | | | in region. Atlas of Southern African Freshwater fishes (Scott et al., 2006). | 3 | | | SAIAB Data base (2006). | O | | | Reference Fish Frequency of Occurrence Report (Kleynhans et al., 2007) | | | Macroinvertebrates | Moderate. Detailed study focussing on mayflies and caddisflies, | | | | conducted by the Albany Museum (Barber and de Moor 1993). Invertebrate data also collected from the area on 20 and 21 April 2010; | 4 | | | plus SASS data collected further downstream by Hermien Roux (river | • | | | health database). | | | Riparian vegetation | Satellite images (Google earth) of the respective reach and aerial photos | | | | (1943, 1975, 1985, 2008).
4x Hydraulic cross-sections (profile) at the site together with surveyed key | | | | vegetation points | 4.5 | | | Hydrology info | 4.5 | | | Ecoregion class and associated information | | | | IHI segments / impacts Biomes and vegetation types of South Africa: (Rutherford & Westfall, | | | | 1986; van Wyk & van Wyk, 1997; Mucina & Rutherford, 2006) | | | Component | Component Data Availability | | | | |-----------|---|--|--|--| | | SANBI Plant of Southern Africa online database (based on several herbaria collections). | | | | | | Data collected during field visit (June 2010) | | | | #### 1.5 THIS REPORT The report consists of the main report (this report, Volume 1) which is outlined below. Specialist appendices are provided separate (Volume 3). All component assessment models and EcoStatus models applied to this study is provided in electronic format. # **Chapter 1: Introduction** This chapter provides an overview of the study area, objectives of the study area and data availability. ### **Chapter 2: Approaches and Methods** This chapter outlines the methods followed for the Ecological Reserve process. Summarised methods are provided for the EcoClassification and EWR scenario determination. #### Chapter 3, 4, 7, 10, 13, 16, 19 and 22: EcoClassification The EcoClassification results are provided for each EFR site. # Chapter 5-6, 8-9, 11-12, 14-15, 17-18 and 20-21: Determination of stress indices and EFR scenarios The stress indices for all physical and biological components at each EWR site are provided. These chapters provide results of different EWR scenarios with respect to low and high flows for the respective EFR sites except EFR M8. Aspects covered in these chapters are component and integrated/stress curves, generating stress requirements, general approach to high flows and final results. Chapter 23: Evaluation of Operational scenarios Operational scenarios at EFR M8 were developed with the aim ofinproving wetland functionality. The scenarios and the ecological consequences of these scenarios are discussed. #### **Chapter 24: Conclusions and Recommendations** The EcoClassification and EWR scenario results are summarised and recommendations are made. #### **Chapter 25: References** # 2 APPROACHES AND METHOD As indicated in the Terms of Reference, EFRs were determined applying the Intermediate Ecological Reserve Methodology (IERM) (DWAF, 1999). The methodology consists of two different steps: - EcoClassification - EFR quantification for different ecological states #### 2.1 ECOCLASSIFICATION The EcoClassification process was followed according to the methods of Kleynhans and Louw (2007). Information shown below is a summary of the EcoClassification approach. For more detailed information on the approach and suite of EcoStatus methods and models, refer to: - Physico-chemical Driver Assessment Index (PAI): Kleynhans et al. (2005). - Geomorphological Driver Assessment Index (GAI): Rountree and du Preez (in prep). - Fish Response Assessment Index (FRAI): Kleynhans (2007). - Macroinvertebrate Response Assessment Index (MIRAI): Thirion (2007). - Riparian Vegetation Response Assessment Index (VEGRAI): Kleynhans et al. (2007a). - Instream Habitat Integrity (IHI): Kleynhans et al. (2009). EcoClassification refers to the determination and categorisation of the PES (health or integrity) of various biophysical attributes of rivers compared to the natural (or close to natural) reference condition. The purpose of EcoClassification is to gain insight into the causes and sources of the deviation of the PES of biophysical attributes from the reference condition. This provides the information needed to derive desirable and attainable future ecological objectives for the river. The EcoClassification process also supports a scenario-based approach where a range of ecological endpoints has to be considered. The state of the river is expressed in terms of biophysical components: - Drivers (physico-chemical, geomorphology, hydrology), which provide a particular habitat template; and - Biological responses (fish, riparian vegetation and aquatic invertebrates). Different processes are followed to assign a category ($A \rightarrow F$; A = Natural, and F = critically modified) to each component. Ecological evaluation in terms of expected reference conditions, followed by integration of these components, represents the Ecological Status or EcoStatus of a river. The EcoStatus can therefore be defined as the totality of the features and characteristics of the river and its riparian areas that bear upon its ability to support an appropriate natural flora and fauna (modified from: Iversen *et al.*, 2000). This ability relates directly to the capacity of the system to provide a variety of goods and services. #### 2.1.1 Process The steps followed in EcoClassification are as follows: - Determine reference conditions for each component. - Determine the PES for each component, as well as for the integrated EcoStatus. - Determine the trend for each component, as well as for the EcoStatus. - Determine the reasons for the PES and whether these are flow or non-flow related. - Determine the EIS for the biota and habitat. - Considering the PES and the Ecological Importance and Sensitivity (EIS), suggest a realistic Recommended Ecological Category (REC) for each component, as well as for the EcoStatus. - Determine
alternative Ecological Categories (ECs) for each component, as well as for the EcoStatus. Note: The Alternative Ecological Categories (AECs) are designed by using a combination of the most likely impacts or changes that could result in a decrease or improvement of the present state. This could include both flow and non flow-related changes depending on the issues governing conditions at the site. The flow diagram (Kleynhans and Louw, 2007) (Figure 2.1) illustrates the process. Figure 2.1 Flow diagram illustrating the information generated to determine the range of ECs for which the EFR will be determined #### 2.1.2 General Approach The Level 4 EcoStatus assessment has been applied according to standard methods. The minimum tools required for this assessment are shown in Figure 2.2. Figure 2.2 EcoStatus Level 4 determination The role of the EcoClassification process is, amongst others, to define the various ECs for which Ecological Flow Requirements (EFR) will be set. It is therefore an essential step in the EFR process. The EFR process is essentially a scenario-based approach and the EFRs determined for a range of ECs are referred to as EFR scenarios. This range of ECs would include the PES, REC (if different from the PES) and the AECs. When designing a scenario that could decrease the PES, flow changes are first evaluated. If this, and the response of other drivers, are deemed to be insufficient on its own to change the category, then the current non-flow related impacts are 'increased', or new non-flow related impacts are included. It is attempted to create a realistic scenario, however, it must be acknowledged that there are many scenarios that could result in a changed EC. ## 2.1.3 Ecological Importance and Sensitivity (EIS) The EIS model, developed by Dr CJ Kleynhans (DWAF, 1999) was used for this study. This approach estimates and classifies the EIS of the streams in a catchment by considering a number of components surmised to be indicative of these characteristics. The following ecological aspects were considered as the basis for the estimation of EIS: - The presence of rare and endangered species, unique species (i.e., endemic or isolated populations) and communities, intolerant species and species diversity were taken into account for both the instream and riparian components of the river. - Habitat diversity was also considered. This included specific habitat types such as reaches with a high diversity of habitat types, i.e., pools, riffles, runs, rapids, waterfalls, riparian forests, etc. With reference to the bullets above, biodiversity in its general form (i.e. Noss, 1990) was taken into account as far as the available information allowed: - The importance of a particular river or stretch of river in providing connectivity between different sections of the river, i.e., whether it provided a migration route or corridor for species, was considered. - The presence of conservation or relatively natural areas along the river section also served as an indication of ecological importance and sensitivity. - The sensitivity (or fragility) of the system and its resilience (i.e., the ability to recover following disturbance) of the system to environmental changes was also considered. Consideration of both the biotic and abiotic components was included here. The EIS results are summarised in this report and the models are provided electronically. EIS categories are summarised in Table 2.3. Table 2.1 EIS categories (Modified from DWAF, 1999) | EIS
Categories | General Description | |-------------------|--| | Very high | Quaternaries/delineations that are considered to be unique on a national or even international level based on unique biodiversity (habitat diversity, species diversity, unique species, rare and endangered species). These rivers (in terms of biota and habitat) are usually very sensitive to flow modifications and have no or only a small capacity for use. | | High | Quaternaries/delineations that are considered to be unique on a national scale due to biodiversity (habitat diversity, species diversity, unique species, rare and endangered species). These rivers (in terms of biota and habitat) may be sensitive to flow modifications but in some cases, may have a substantial capacity for use. | | Moderate | Quaternaries/delineations that are considered to be unique on a provincial or local scale due to biodiversity (habitat diversity, species diversity, unique species, rare and endangered species). These rivers (in terms of biota and habitat) are usually not very sensitive to flow modifications and often have a substantial capacity for use. | | Low/Marginal | Quaternaries/delineations that are not unique at any scale. These rivers (in terms of biota and habitat) are generally not very sensitive to flow modifications and usually have a substantial capacity for use. | #### 2.2 EFR DETERMINATION The Habitat Flow Stressor Response method (HFSR) (IWR S2S, 2004; O'Keeffe *et al.*, 2002), a modification of the Building Block Methodology (BBM; King and Louw, 1998) was used to determine the low (base) flow EFRs. This method is one of the methods used to determine EFRs at the intermediate level. A short summary of the approach is provided below. The basic approach is to set stress indices for fish and macroinvertebrates. The stress index describes the consequences of flow reduction on flow dependant biota and is determined by first assessing the response of habitat to a flow reduction. The habitat flow index is described separately for fish and macroinvertebrates as an instantaneous response of habitat to flow in terms of a 0-10 index relevant for the specific site. The zero stress (best habitat) and 10 stress (worst habitat) is fixed as follows to ensure that the range for fish and macroinvertebrates are the same: 0: Optimum habitat represented by the maximum natural base flow. Note that without adequate hydrological data, this is difficult to identify. 10: No flow. Nov 2010 The second step is to determine the biota stress index which describes the instantaneous response of biota to change in habitat (and therefore flow) in terms of a 0-10 stress index. The description of the changes of habitat at each stress level (as described in the habitat stress index) is then related to the response of the fish and macroinvertebrates indicators. The biota stress index is described separately for fish and macroinvertebrates. The zero stress, representing optimum habitat, would therefore represent a situation of zero stress to biota with the maximum abundance of species present under these conditions. The stress index therefore describes the habitat conditions and biota response for fish and macroinvertebrates at a range of low flows. The fish and macroinvertebrate stress-flow relationship will not be the same as the responses to the same flow will/can result in different stress for fish and macroinvertebrates. The fish and macroinvertebrate stress indices are then used to convert separate natural and present day flow time series to a stress time series. The stress time series is converted to a stress duration graph for the highest and lowest flow months. This then provides the specialist with the information of how much the stress has changed from natural under present conditions due to changes in flow. It would follow that if flow has decreased from natural, stress would increase and vice versa. If specialists do not agree with the levels of stress under natural conditions based on their knowledge of the species, the stress indices were refined. Tools used to determine the stress indices are specialist knowledge and information about the indicator species' habitat requirements, the hydraulics in the specific format required, and the natural hydrology. At this stage only the instantaneous response of habitat and biota to flow reduction has been assessed. This means that the actual stress requirements AT SPECIFIC DURATIONS AND DURING SPECIFIC SEASONS to maintain the biota in a certain ecological state has not yet been assessed. The information used to determine the Ecological Category for the instream biota is considered when determining the stress required to maintain or achieve this ecological state. The stress requirement is set for drought and maintenance conditions. Drought stress is set at 5% exceedance. The maintenance stress is set at a percentage which is determined based on the low flow hydrological variability of the specific river being assessed. The more variable the river, the higher the percentage at which maintenance stress is set. Any stress requirements for other percentage points can also be provided. The requirements are still provided in terms of the separate fish and macroinvertebrate indices. Obviously one can only deal with one stress-flow relationship, and an integrated stress index is required for this. The integrated stress curve is comprised by the highest stress of either the fish or macroinvertebrate component at any one flow. This forms the integrated stress curve and the results for fish and macroinvertebrates must therefore be converted to integrated stress in order to be comparable. Figure 2.4 illustrates an example of the interpolated individual component stresses as well as the integrated curve. The black line represents the integrated curve and while the other lines represent the stress flow relationships for the various components. The integrated line in this case consists of the flow dependant macroinvertebrates (FDI) (purple line) for the stress range 0 to 5, and fish (blue line) for the stress range 5 to 10. Figure 2.3 Component
and integrated stress curves Specialists determine the required stress (based on the habitat and biota response) for different durations and for different ecological categories. The complexity here, as with all flow requirement methods, is to interpret an instantaneous response in terms of duration and seasonal requirements. The required stress is therefore converted to integrated stress and plotted on a graph which also shows the natural and present day flow converted to integrated stress. This therefore supplies the 'hydrological check' to ensure that the requirements are realistic in terms of the natural hydrology and present day hydrology (only used when realistic and of reasonable confidence). The low flow stress requirement for an EC consists of the component requirement with the lowest stress requirement (highest flow requirements). For example, if fish has a requirement at 5% duration of a stress of 6 to achieve a C EC, and macroinvertebrates has a requirement for a C EC of 8, the final requirement will be a stress of 6 as the 6 stress would cater for the macroinvertebrates, whereas the 8 stress could not cater for the fish and would result in the fish being in a lower EC. These final requirements are therefore connected manually (a 'hand drawn line' as the required stress duration) and illustrated as a stress duration graph. Figure 2.5 is an example of a stress duration graph and illustrates the stress requirements and stress points required for a B PES and REC (purple arrowed line), and C AEC (green arrowed line). The different coloured circles indicate the requirements of the instream biota for the specific EC. Each circle is labeled as follows and indicates a different biotic component: - LSR Large semi-rheophilic fish guild. - FDI Flow dependent macroinvertebrates. - MVI marginal vegetation macroinvertebrates. In this example the drought flows (5%) of the different biotic components are the same for all ECs. Figure 2.4 Stress duration curve for a D PES and REC, and C AEC up - DRY season These stress requirements (provided for two key months or the high and low flow season), must now be manipulated to provide a complete low flow regime as follows: - The Desktop estimates for the same ECs as being assessed are converted to stress and also provided on the above graph. The hydrologist then uses the Desktop estimate and modifies it to fit the specialist requirements. This is done using the Desktop Reserve Model and the Flow Stressor Response model within SPATSIM¹ (Spatial and Time Series Modelling) (Hughes and Forsythe, 2006). The process is specifically designed this way as the seasonal characteristics of the hydrology and the rules for the different ECs are built into the Desktop estimate². This would therefore ensure that the requirements set by specialists do not deviate significantly from the natural seasonal variability. - There are a range of options that one can use to make these modifications to the Desktop Reserve Model (DRM), such as changing the total volume required for the year, changing specific monthly volumes, changing durations of either drought or maintenance flows, changing the seasonal distribution and changing the category rules and shape factors. - The DRM will then extrapolate the requirements to the other months or seasons and specialists can check these other months. - The changes made to the DRM to fit the specialist requirements are documented. The graphs for the final low flow stress requirements are documented. 19 . ¹SPATSIM is an integrated data management and modelling software package developed in Delphi using the spatial data handling functions of Map Objects. It has been designed to allow the efficient management, processing and modelling of the type of data associated with a range of water resource assessment approaches used in South Africa including streamflow and other time series data display and analysis, rainfall-runoff models (including the Pitman monthly model) and a variety of Ecological Reserve determination models. The desktop estimates for specific ECs include rules for these ECs based on long-term data records and expert information. #### 2.2.1 High flows The approach to set high flows is a combination of the Downstream Response to Imposed Flow Transformation (DRIFT; Brown and King, 2001) approach and BBM. The high flows are determined as follows: - Flood ranges for each flood class and the geomorphology and riparian vegetation functions are identified and tabled by the relevant specialists. - These are provided to the instream specialists who indicate: - which instream function these floods cater for, - whether additional instream functions apart are required, - Whether they require any additional flood classes to the ones identified. - The number of floods for each flood class is identified as well as where (early, mid, late) in the season they should occur. - These numbers of floods are then adjusted for the different Ecological Categories. - The floods are evaluated by the hydrologist to determine whether they are realistic. A nearby gauge with daily data is used for this assessment. Without this information it is difficult to judge whether floods are realistic. - The hydrologist then determines the daily average and documents the months in which the floods are spaced. - The floods are then entered into the DRM to provide the final .rul and .tab files. #### 2.2.2 Final flow requirements The low and high flows are combined to produce the final flow requirements for each EC as: - An EFR table, which shows the results of high flows and low flows for each month separately. Floods with a frequency higher than 1:1 are often not included as they cannot be managed. - An EFR rule table which provides the recommended EFR flows as a duration table, showing flows which should be provided when linked to a natural trigger (natural modelled hydrology in this case). EFR rules are supplied for total flows as well as for low flows only. The low flow EFR rule table is useful for operating the system, whereas the EFR table must be used for operation of high flows. # 3 ECOCLASSIFICATION: EFR O1 (HOPETOWN) #### 3.1 EIS RESULTS The EIS evaluation results in a **MODERATE** importance. The highest scoring matrices are: - Presence of aquatic instream rare and endangered fish species (BKIM); - Presence of rare and endangered riparian biota such as the clawless otter, black stork, African marsh harrier, Namaqua stream frog, Straw-coloured fruit bat, Crinum bulbispermum; - Unique riparian biota: Orange River white-eye, Upper Gariep Alluvial Vegetation classified as vulnerable (2.3% under protection), 5 endemic riparian obligates; - Aquatic instream biota that is intolerant to zero flow situations: Semi-rheophillics, and rheophillic invertebrates; - Riparian wetland biota taxon richness: 59 species of riverine fauna present (61% of expected spp); - Critical riparian habitat and refugia: The riparian (large tree) habitat is a refuge for 17 true riparian spp and 7 semi-aquatic spp. for nesting, roosting and shelter; - Riparian migration corridor. #### 3.2 REFERENCE CONDITIONS The reference conditions (RC) for the components in EFR O1 are summarised in Table 3.1 Table 3.1 EFR O1: Reference conditions | Component | Reference conditions | Conf | |------------------------|--|------| | Hydrology | 6738 nMAR | 2.5 | | Physico-
chemical | See the description of RC per variable in Table 3.2 | 3 | | Geomorphology | Braided reach (as indicated in the 1950's and 1960's aerial photos), with multiple channels of gravel, cobbles and sand. The banks would have been well-vegetated. | 3 | | Riparian
vegetation | Vaalbos Rocky Shrubland vegetation type, which occurs within the Savanna Biome and the Eastern Kalahari Bushveld Bioregion. Distinct from the terrestrial zone, and is categorised at an azonal vegetation type: the Upper Gariep Alluvial Vegetation. Expect a mix of open alluvia or cobble/boulder and vegetated areas in the marginal zone. Vegetation, similarly, should be a mix of woody (<i>Gomphostigma virgatum, Salix mucronata subs. mucronata</i>) and non-woody (<i>Phragmites australis, Cyperus marginatus</i>) vegetation. In the lower zone one would expect the same as the marginal zone, with the addition of lower zone alluvial-loving woody species such as <i>Combretum erythrophyllum</i> and <i>Searsia pendulina</i> . Terraces or bars should be well vegetated with some open areas. Vegetation on the upper zone should be dominated by woody species (<i>Acacia karoo, Ziziphus mucronata, Searsia pendulina</i> mainly) with some savanna species occurring. Banks should be well vegetated and dominated by woody riparian thickets, with dominant species as outlined above and a small proportion of terrestrial woody species. | 3 | | Fish | Based on the available fish distribution data and
expected habitat composition, 11 indigenous fish species have a high to definite probability of occurrence. The indigenous AMOS is also mentioned as having peripheral occurrence, but was excluded from reference conditions as this species is not expected to occur naturally in the Orange River and can probably not complete its life-cycle successfully. The expected habitat composition at the site also met the requirements of all expected fish species. The expected FROC provided in Kleynhans <i>et al.</i> (2007) for site D3ORAN-HOPET was broadly used to determine the reference FROC, with changes made based on additional information. | 3 | | Component | Reference conditions | Conf | |--------------------|--|------| | Macroinvertebrates | Reference conditions were based on professional judgment and data collected in the area by Agnew (1965), Pitchford and Visser (1975), de Kock <i>et al</i> (1974), Pretorius <i>et al</i> (1974) and Palmer (1996). The reference SASS5 Score is 188 and the ASPT is 6.5. The expected number of SASS5 taxa is 29. | 3 | | Riverine Fauna | Cover has increased (Mackenzie, <i>pers com</i>). Original fauna consisted of 95 riverine vertebrate species which includes aquatic and semi-aquatic species, marginal habitat species, and riparian species. | 3 | #### 3.3 PRESENT ECOLOGICAL STATE The PES reflects the changes in terms of the Ecological Category (EC) – Table 3.2) from reference conditions. The summarised information is provided in Table 3.2. Table 3.2 EFR O1: Present Ecological State | Component | PES Description | EC | Conf | |---------------------|---|-----|------| | Hydrology | 3678.65 present day MAR (54.6% of nMAR) | E | 2 | | Physico-chemical | See table 3.3 | D | 3 | | Geomorphology | Reasons for the PES are: Present Day flows in this section are about half of the MAR. A peaking hydro-power dam operates about 100km upstream of the site with twice-daily floods. Despite these daily floods, large flood sizes and frequencies are highly reduced; accounting for the increased area of bars and islands in the reach (observed over the historical record), and especially the progressive stabilisation of the sedimentary features by vegetation. Scouring events across these bars are too infrequent and small to keep sedimentary and vegetation encroachment in check. Although there are increased sediment loads from the upper catchment, much of this is trapped in the upstream dams, but tributaries and flushing of fines and suspended load through the dams compensates for some of the reduced sediment supply downstream. Additionally, large floods are reduced, so the reduced sediment is somewhat offset by a reduced frequency of large scour events. Moderate floods now occur as twice-daily flows due to peaking hydropower generation, and this has likely armoured sections of the channel, but may be responsible for the increased vegetation in the lower riparian zones due to more frequent wetting. | C/D | 2.5 | | Riparian vegetation | Marginal Zone: Dominated by dense stands of <i>Phragmitesaustralis</i> with a distinct lack of woody marginal zone species such as <i>Gomphostigmavirgatum</i> and <i>Salix mucronata</i> , although these species occur with very low abundance. The frequency of inundation disturbance is likely to prohibit recruitment of these species while reeds are able to withstand and even benefit. Lower Zone: The zone is frequently flooded, which is clearly shown by scour and also species composition. Marginal zone woody species are common in this zone, as well as many sedge and wetland species. Woody species have attained high densities and stature and have likely benefited from frequent wetting that is not extreme enough to be an impact as it is in the marginal zone. Upper zone and even terrestrial woody species (such as <i>Acacia karoo</i> and <i>Ziziphus mucronata</i>) are also commonly recruiting in this zone, but seem to fail to reach full maturity (due to flooding disturbance). Upper Zone: Terrace or bar vegetation component is absent and represents the expected for the lower zone. Macro Channel Bank: Dominated by woody riparian and terrestrial savanna species with a mix of open areas that are either sandy or colonised by grasses. | B/C | 4 | | Component | PES Description | EC | Conf | |--------------------|---|-----|------| | Fish | All the expected fish species should still be present in this river reach albeit in a moderately to highly reduced FROC. Species that are thought to have been impacted the most include LUMB, BANO, BKIM and CGAR. The primary changes responsible for deterioration in the fish assemblage is primarily associated with altered hydrology / flow modifications related to fluctuating water releases for hydro-electric power generation. This results in loss of marginal vegetation as cover, flushing of substrates (critical impact during spawning of substrate breeders) and laying dry of marginal zone (especially significant during breeding season for vegetation spawners). The impacts of migration barriers on the natural movement of fish are furthermore expected to impact the fish assemblage negatively in this river reach. Other impacts are related to water quality deterioration (especially impacts from dams on temperature and oxygen, as well as presence of toxics). The presence of alien fish species (both predacious and habitat modifying) furthermore impact on the natural fish populations of this reach. | C/D | 3 | | Macroinvertebrates | A total of 21 SASS5 taxa was observed at the site, out of 27 expected (i.e. 78%). The observed SASS5 Score was 128 (72%), and the ASPT was 6.1 (92%). Key taxa expected but not observed were mainly taxa that prefer slow-flowing water, such as shrimps (Atyidae), Coroxidae, Notonectidae, Ceratopogonidae, and Lymnaeidae. The fauna was dominated by baetid mayflies. No other taxa were abundant. Leptophlebiid mayflies and gomphid dragonflies were less abundant than expected. A number of sensitive taxa were recorded, including Leptoceridae (Leptoceridae (Parasetodes and Oecetis sp), flat-headed mayflies (Heptageniidae) Tricoryhtidae and Leptophliidae. | С | 3 | | Riverine Fauna | 82% of expected fauna species (78 from 95 animals) can occur in this segment. This comprises 84% aquatic and semi-aquatic species, 71% marginal habitat species, and 90% riparian species. Thus, the deep channel with some instream pools, shallower edges and associated marginal vegetation dominates the riverine habitat of this reach. The utilization of the terrain behind or in the riparian band (floodplain areas) in stretches of the river reach is utilized by organized agriculture, eliminating most of the backwater habitats that would have been there originally. The band of riparian vegetation on the higher terraces or floodplains consists of large tree and thicket components which forms favourable upper riparian habitats. In some places the thickets are irregular and patchy, discontinuing the migration corridor. There are little shallow marginal areas such as sandbanks and mudflats with hygrophilous vegetation on the river margins, as reeds encroach in these habitats. | С | 4 | Table 3.3 EFR O1: Present Ecological State: Physico-Chemical | | | | WATER QUA | ALITY MONITORING P | OINTS | | |---------------------------
---|------|-----------|---|---|--| | RIVER | Orange River | | RC | Orange River @ Mar
D3H008Q01 (1966 - | ksdrift (D33K; ecoregion II: 26.01)
1978; n=51) | | | EFR SITE | EFR O1 (D33G; ecoregion II: 26.01) | | PES | D3H008Q01 (2000 - | Marksdrift (D33K; ecoregion II: 26.01)
2010; n=414-427)
sample collection in 2008 (n=2) | | | Confidence assessment | lans exist e.a. metalions pesticides herbicides. Water quality and EER site in the same | | | | | | | Water Quality C | onstitue | ents | RC Value | PES Value | Category/Comment | | | Inorganic salts
(mg/L) | | | | | | | | | Ca | | 29.75 | 24.74 | Concentrations similar for the PES. | | | Salt ions (mg/L) | CI | | 9.96 | 12.98 | except for sulphate, sodium and | | | | K | | 1.80 | 1.79 | chloride which show increases from | | | | Mg | 11.00 | 10.24 | the RC. | | | |-----------------------|--|-----------------------|--|--|--|--| | | Na | 10.80 | 13.75 | | | | | | SO ₄ | 11.00 | 19.94 | ! | | | | | SRP | 0.014 * | 0.020 | A category | | | | Nutrients (mg/L) | TIN | 0.15 | 0.38 | B category | | | | | pH (5 th + 95 th %ile) | 6.93 + 8.02 | 7.64 + 8.34 | A/B category | | | | | Temperature | - | Two upstream dams | No data. | | | | | Dissolved oxygen | - | result in large
fluctuations in
Temperature + DO. | C - D category (qualitative assessment) | | | | Physical
Variables | Turbidity (NTU) | - | WMS data:
Avg: 17.62
95 th %ile: 51.2
Koekemoer (2010):
21.85 (avg) | No RC data. Turbidity from system that naturally carries sediments, although trapped in dams. A/B category (qualitative assessment). | | | | | Electrical conductivity (mS/m) | 28.36
(n=79) | 28.88 | A category | | | | | Chl a: periphyton (mg/m²) | - | - | - | | | | | Chl a: phytoplankton (µg/L) | - | Avg: 17.5 (n=2)
(Koekemoer, 2010) | C category | | | | Response
variables | Macroinvertebrates | ASPT:6.6
SASS: 179 | ASPT: 6.1
SASS: 128
MIRAI: 72.8% | C category | | | | | Fish community score | | FRAI: 57.6% | C/D category | | | | | Diatoms | - | EFR O1: 15.7.
Marksdrift: 14.4 (avg
SPI) | B category | | | | <u></u> | Fluoride (mg/L) | 1.5 ** | 0.31 | A category | | | | | Aluminium (mg/L) | 0.02 ** | 0.221 (n=2)
(Koekemoer, 2010) | E category | | | | Toxics | Iron (mg/L) | - | 0.143 (n=2)
(Koekemoer, 2010) | No guideline + insufficient data | | | | | Ammonia (mg/L) | 0.002 | 0.01 | A category | | | | | Other | - | - | Impacts expected due to farming-related pesticides and fertilizer use. | | | | OVERALL SITE | OVERALL SITE CLASSIFICATION | | D – final category based on output of PAI model, expert judgement and hydrology category (E) | | | | ^{*} boundary value for the A category recalibrated #### 3.3.1 EFR O1: Trend The trend was also assessed. Trend refers to the situation where the responses have not yet stabilised in reaction to catchment changes. The evaluation is therefore based on the existing catchment condition. Geomorphology only indicated a long term negative trend and this was due to sediment which is still moving through the system. This however did not affect the other components which were all stable (See Figure 3.6). # 3.3.2 EFR O1: PES causes and sources The reasons for changes from reference conditions must be identified and understood. These are referred to as causes and sources ((http://cfpub.epa.gov/caddis/)). The PES for the components at EFR O1 as well as the causes and sources for the PES are summarised in Table 3.4. ⁻ no data ^{**} benchmark value, as no data Table 3.4 EFR O1: PES causes and sources | | PES | Conf | Causes | Sources | F ¹ /NF ² | Conf | |------------------------|-----|------|---|---|---------------------------------|------| | Hydro ³ | E | 2 | Increase in unseasonal releases of small floods, decrease of moderate and large floods. | Twice daily flood releases from
Vanderkloof dam for hydro power,
upstream dams | F | 5 | | Physico -chemical | D | 3 | Elevated nutrients and potential toxicant loads due to fertilizer and pesticide use | Land-use is agricultural, resulting in some toxicant and nutrient loading expected, although data only reflects a small increase in salts and nutrients. | NF | 4 | | Physico | | | Temperature fluctuations result in a change in water quality category from a C to D category. | The location of the upstream dam and twice daily peaks in flow impact on temperature and levels. | F | 2 | | | | | Reduced frequency and size of large floods | Large dams upstream trap big floods and reduce the magnitude and frequency downstream | F | | | Geomorphology | C/D | 2.5 | Reduced sediment load | Upstream dams trap sediment and reduce supply to downstream reaches. These impacts have been ameliorated somewhat by reduced flows, and flushing of suspended loads through the dams. | NF | 2.5 | | 0 | | | Peaking power generation – daily stage fluctuations | Daily stage fluctuations are reworking sediments in the marginal and lower riparian zones, and probably armouring the bed. | F | | | - L | | | Increased reed cover in the marginal zone | Reduced and regulated flows | F | | | Riparian
vegetation | B/C | 4 | Increased woody cover and density especially on lower zone and mid-
channel bars | Bi-daily fluctuations and reduced moderate floods | F | 3 | | | | | Altered species composition | Small percentage of exotic annuals | NF | | | | | | Decreased overhanging vegetation as cover for fish resulted in decreased FROC of species with preference for these habitats. Loss of habitat (cover) also resulted in increased exposure to predators. | Continuous fluctuation in water levels due to hydro power releases. Increased bank erosion, flow modification and inundation. Farming: removal or change in riverine vegetation. | F | | | | | | Decrease in FROC and abundance of fish species with preference for fast habitats. | Loss in abundance and diversity of especially fast habitats as result of decreased base flows. | F | | | Fish | C/D | 3 | Decreased water quality affect species with requirement for good water quality. | Presence of toxins, altered temperature and oxygen due to dams and other human activities. Farming: water abstraction, reduced flows, pollutants. Farming: mineralization and eutrophication (fertilizers) due to irrigation run-off. Farming: Potential presence of pesticides and herbicide. Dams trapping silt altering water clarity, altered temperature and O2 regimes. | NF | 3.5 | | | | | Decreased species diversity and abundance as result of presence of predacious alien species (MSAL) feeding on indigenous fish. | Presence of alien predatory species. Dams create further suitable habitat for undesirable species. | NF | | | | | | Bio-turbation from CCAR. Increased
turbidity and disturbed bottom
substrates reduce bottom substrate
quality and water quality for
indigenous fish (especially impact
on LUMB breeding habitats) | Presence of alien CCAR. Dams create habitat for undesirable species. | NF | | | | PES | Conf | Causes | Sources | F ¹ /NF ² | Conf | |--------------------|--------|--------|--|--|---------------------------------|------| | | | | Decreased abundance, and therefore FROC related to over utilization of fish resource for human consumption. | Poaching and over-fishing of fish using nets (gill and seine nets, often home-made). | NF | | | | | | Reduced spawning success resulting in decreased FROC of many species. | Flushing away of eggs or laying dry of marginal zone breeding areas (rocky/cobbles and vegetated). Flow modification: Absence or lag effect on spring flushes, reduced habitat suitability and stimuli, modified flow pattern disrupt normal breeding cycle of fish species. | F | | | | | | Presence of migration barriers reduces migration success (breeding, feeding and dispersal) of some species. | Large dams and some weirs. | NF | | | | | | Flow fluctuations (bi-daily) | Generation of peak demand hydro-
power | F | 4 | | Macroinvertebrates | С | | Elevated low flows | Discharges to meet demands for winter power generation and irrigation demands | F | 4 | | /ert | | 3 | Increased photic depth | Upstream impoundments trapping silt | NF | 4 | | acroin | | | Altered water temperature (warmer winters, colder summers) | Thermal inertia of upstream impoundment | NF | 3 | | ğ | | | Increased Phytoplankton | Upstream impoundments | NF | 4 | | | | | Toxic algal blooms, such
as
Microcystis | Annual overturn | NF | 3 | | | | | Discontinued riparian corridor that originally acted as migration corridor Loss of riparian trees for perching, nesting and feeding by riverine fauna | Removal of riparian vegetation for agriculture | NF | | | Riverine Fauna | С | 4 | Increase in reeds in marginal zone, replacing mudflats and sandy alluvial habitats for waders (birds) Slow habitats for fish and invertebrates impacted – thus impacting on <i>piscivorous</i> and <i>invertivorous</i> fauna Daily inundation of lower marginal zone deter semi-aquatic fauna to settle in the zone | Daily elevated flows due to dam releases | F | 3 | | | | | Less variability in the fluvial system
(lower high flows, higher low flows)
jeopardize faunal diversity and
integrity | flows) | F | | | | | | Loss of habitat for wetland faunal species that utilized these habitats | agriculture | NF | | | 1 | Flow r | elated | 2 No | n Flow related 3 | Hydro | logy | The major issues that have caused the change from reference conditions are the releases for hydropower, barrier effects of the dams, water quality problems and the destruction of and removal of vegetation on floodplains for agriculture. The dominant factor seems to be the hydro-electric releases. #### 3.3.3 EFR O1: PES EcoStatus To determine the EcoStatus, the macroinvertebrates and fish must first be combined to determine an instream EC. The instream and riparian categories are integrated to determine the EcoStatus. Confidence is used to determine the weight that the EC should carry when integrating into an EcoStatus (riparian, instream and overall). The EC percentages are provided (Table 3.5) as well as the portion of those percentages used in calculating the EcoStatus. Table 3.5 MRU: EFR O1: Instream | INSTREAM BIOTA | Importance
Score | Weight | |--|---------------------|--------| | FISH | | | | 1.What is the natural diversity of fish species with different flow requirements | 3 | 80 | | 2.What is the natural diversity of fish species with a preference for different cover types | 4 | 100 | | 3. What is the natural diversity of fish species with a preference for different flow depth classes | 3.5 | 90 | | 4. What is the natural diversity of fish species with various tolerances to modified water quality | 2.5 | 70 | | MACROINVERTEBRATES | | | | What is the natural diversity of invertebrate biotopes | 3.5 | 80 | | 2. What is the natural diversity of invertebrate taxa with different velocity requirements | 4 | 100 | | 3. What is the natural diversity of invertebrate taxa with different tolerances to modified water quality | 2 | 50 | | Fish | 3 | | | Macroinvertebrates | 3 | | | Confidence rating for instream biological information | 3 | | | INSTREAM ECOLOGICAL CATEOGORY | С | | | Riparian vegetation | B/0 | | | Confidence rating for riparian vegetation zone information | 3.2 | 2 | | ECOSTATUS | С | | # 3.4 RECOMMENDED ECOLOGICAL CATEGORY (REC): The REC is determined based on ecological criteria only and considers the EIS, the restoration potential and attainability there-of. The EIS is MODERATE, therefore the REC is to maintain the PES in a C. #### 3.5 SUMMARY OF ECOCLASSIFICATION RESULTS Table 3.6 EFR O1: Summary of EcoClassification results | Driver Components | PES | TREND | |------------------------------------|----------|-------| | IHI
HYDROLOGY | E | | | WATER QUALITY | D | | | GEOMORPHOLOGY | C/D | - | | INSTREAM IHI | D/E | | | RIPARIAN IHI | С | | | Response Components | PES | TREND | | FISH | C/D | 0 | | MACRO
INVERTEBRATES | С | 0 | | INSTREAM | С | 0 | | | | | | RIPARIAN VEGETATION | B/C | 0 | | RIPARIAN VEGETATION RIVERINE FAUNA | B/C
C | 0 | | | | | #### 3.6 FLOW REQUIREMENTS Due to the unlikely situation that the present operation of the dam will change and the strategic use (ESCOM) that results in this operation, the setting of flow requirements were not going to be undertaken. This was confirmed with the EcoClassification assessment. There are also no non-flow related mitigation measures that can be taken to improve the system. As the EIS is MODERATE, the aim is to maintain the EIS. The current operation of the system and the present day hydrology will therefore maintain the EFR for this site. Any changes to operation of the system, or new developments that could further decrease the spills of the dams will have to be assessed as part of the scenario evaluation phase. # 4 ECOCLASSIFICATION: EFR O2 (BOEGOEBERG) #### 4.1 EIS RESULTS The EIS evaluation results in a **HIGH** importance. The highest scoring matrices are: - Riparian rare and endangered species such as clawless otter, black stork, African marsh harrier, Namaqua stream frog, straw-coloured fruit bat. Riparian vegetation: 2 spp listed as declining, Acacia aerioloba, Crinum bulbispernum; - Unique riparian biota: Orange river white-eye and 6 endemic riparian vegetation species; - Riparian biota taxon richness: 75 species of riverine fauna present (79% of expected spp). Riparian vegetation: Occurs in Griqualand West centre of plant endemism; - High diversity of riparian habitat types and features such as the abundance of riparian and marginal habitat available for riverine fauna; - Critical riparian habitat and refugia: The lush riparian (large tree) habitat is a refuge for 19 true riparian spp and 7 semi-aquatic spp. for nesting, roosting and shelter; - Riparian habitat which is sensitive to flow changes: Rheophytes sensitive to flow changes. Need fast flowing shallow water; - Riparian migration corridor: A riparian band in the area annually inundated by high floods remains intact. This intact band forms a very important migration corridor for most of the riverine faunal species present in the area. #### 4.2 REFERENCE CONDITIONS The reference conditions for the components in EFR O2 are summarised below in Table 3.1 Table 4.1 EFR O2: Reference conditions | Component | Reference conditions | Conf | |---------------------|---|------| | Hydrology | 10573.7 nMAR | 3.5 | | Physico-chemical | See the description of RC per variable in Table 4.3. | 3 | | Geomorphology | The gross morphology of the site is close to reference conditions. The site was a bedrock anatomising reach, characterised by multiple distributaries separated by very stable, vegetated bedrock core bars. Within the active channels, local slopes are steep and sediment deposition would be inhibited such that sandy sedimentary features would be limited to lee areas and low-energy marginal zones. Backwaters would be common. | 4 | | Riparian vegetation | Occurs within the Lower Gariep Broken Veld type, which occurs within the Nama-Karoo Biome and the Bushmanland Bioregion. The riparian zone is distinct from the terrestrial zone however, and is catagorised at an azonal vegetation type: the Lower Gariep Alluvial Vegetation. Alluvial terraces and banks are dominated by woody riparian thickets (mainly <i>Acacia karoo, Ziziphus mucronata, Rhus pendulina</i>) or stands of <i>Tamarix usneoides</i> or reeds (<i>Phragmites australis</i>). Cobble or boulder features are characterised by a mix of woody species (<i>T. usneoides, Gomphostigma virgatum</i>) and sedges (<i>Cyperus spp</i>). Frequently flooded alluvia are open or grassed (<i>Cynodon dactylon</i> mainly) and <i>Salix mucronata</i> is also common on frequently inundated alluvia. <i>Crinum bulbispermum</i> is common. Marginal Zone: Expect a mix of open alluvia or cobble/boulder and vegetated areas. Vegetation, similarly, should be a mix of woody (<i>Gomphostigma virgatum, Salix mucronata subs. mucronata</i> and <i>subs. capensis</i>) and non-woody (<i>Phragmites australis, Cyperus marginatus</i>) vegetation. Lower Zone: Expect the same as the marginal zone, with <i>Tamarix usneoides</i> on low lying bars. Upper Zone: Terraces should be well vegetated with small percentage of open areas. Vegetation will be a mix of reed beds (<i>P. australis</i>) or woody thickets (<i>Acacia karoo, Ziziphus mucronata, Rhus pendulina</i> and <i>Combretum erythrophyllum</i> mainly). | 3 | | Component | Reference conditions | Conf | |--------------------
---|------| | | Macro Channel Bank: Banks should be well vegetated and dominated by woody riparian thickets, with dominant species as outlined above. Floodplain: Should be similar to the macro channel bank with <i>Acacia erioloba</i> as a landmark species. Expect woody thickets with some open alluvial areas that are variously grassed. | | | Fish | Eleven indigenous fish species (ASCL,BANO, BAEN, BKIM, BPAU, BTRI, CGAR, LCAP, LUMB, PPHI & TSPA) have a high to definite probability of occurrence. The expected habitat composition at the site also met the requirements of the expected fish species. The indigenous <i>AMOS</i> is also mentioned as having peripheral occurrence, but was excluded from reference conditions as this species is not expected to occur naturally in the Orange River and can probably not complete its life-cycle successfully. The expected FROC provided in Kleynhans <i>et al.</i> (2007) for site D7ORAN-SEEKO, located within the fish reach under investigation was broadly used to determine the reference FROC for reach EFR O2, with alterations made based on all available current information. | 3 | | Macroinvertebrates | Reference conditions were based on professional judgment and data collected in the area by Agnew (1965), de Kock <i>et al</i> (1974), Pretorius <i>et al</i> (1974) and Palmer (1996). The reference SASS5 Score is 179 and the ASPT is 6.6. The expected number of SASS5 taxa is 27. | 4 | | Riverine Fauna | Potentially 95 animal species inhabited the riverine habitats. Open alluvia in marginal zone utilized by waders. Variety of tree zones (from lower to macro channel bank) with different structural compositions act as refuge, shelter, breeding and feeding habitats, while the intact riparian corridor being used as a migration route for riverine fauna. Mudflats and alluvial soils in lower riparian zone used by burrowing and tunnelling fauna. Reeds and shrubs also utilized as shelter, breeding and feeding habitats. | 3 | # 4.3 PRESENT ECOLOGICAL STATE The PES reflects the changes in terms of the Ecological Category (EC – Table 4.8) from reference conditions. The summarised information is provided in Table 4.2. Table 4.2 EFR O2: Present Ecological State | Component | PES Description | EC | Conf | |---------------------|---|----|------| | Hydrology | 4629.6 nMAR (44% of nMAR) | E | 3 | | Physico-chemical | See Table 4.3 | С | 3.5 | | Geomorphology | Although the flows are critically reduced at the site, this has been in some ways compensated for by the reduced sediment loads (since much is trapped in upstream dams). The site is generally not very sensitive to the impacts of base flow and small flood changes, nor to small changes in sediment load. The key issue for this site is the loss of large floods that scour and maintain the distributary channels and beds. The very large dams now in place in the upstream catchment will probably prevent any sufficiently large scour events to occur in future, and thus stabilisation and increasing vegetation on the lower banks and bars will occur in the future. Rthe historical aerial photographs show slight encroachment of vegetation in to the channels. | С | 3.5 | | Riparian vegetation | Marginal: Cobble and bedrock areas have a vibrant population of <i>G. virgatum</i> . Other dominants however are <i>S. mucronata</i> , <i>P. australis Cyperus marginatus</i> , <i>Persicaria decipiens</i> , <i>P. lapathifolia</i> and <i>Cynodon dactylon</i> . Lower: Well wooded in places with <i>G. virgatum</i> , and <i>S. mucronata</i> mainly, but also with <i>Acacia karoo</i> recruits. Areas which are open (mainly cobble/boulder) or dominated by non-woody vegetation (<i>P. australis</i> , <i>Crinum bulbispermum</i> , <i>Cyperus marginatus</i> , <i>Persicaria x2</i> and <i>C. dactylon</i> mainly) make up the mosaic. Upper: RB has extensive open areas (cobble or boulder) with <i>T. usneoides</i> mainly. Otherwise the zone is predominantly woody with common species on both banks but LB mainly being <i>T. usneoides</i> , <i>A. karoo</i> , <i>R. pendulina</i> , <i>Z. mucronata</i> . <i>D. lycioides</i> , <i>Lycium hirsutum A. erioloba</i> , <i>Prosopis glandulosa</i> , and <i>P. velutina</i>). A single specimen of <i>Combretum erythrophyllum</i> was found. Macro Channel Bank: similar to upper zone, but without the cobble/boulder beds Floodplain: similar to Macro channel bank, with terrestrial species and | В | 3.6 | | Component | PES Description | EC | Conf | |--------------------|--|----|------| | | dominated by woody thickets | | | | Fish | All the expected fish species are still present in this river reach albeit in a slightly to moderately reduced FROC (LUMB, BANO and BKIM). Some loss of marginal zone overhanging vegetation due to altered hydrological regime also impact fish assemblage negatively. The negative impacts associated with the alien species – CIDE, GAFF, CCAR – include: loss of vegetation and habitat, bio-turbation and habitat loss, wq alteration, and predation on native fish eggs and larvae. | С | 3 | | Macroinvertebrates | A total of 20 SASS5 taxa was observed at the site, out of 27 expected (i.e. 74%). The observed SASS5 Score was 116 (65%), and the ASPT was 5.8 (87%). The most obvious change from natural has been outbreaks of pest blackflies (mainly <i>Simulium chutteri</i>) following impoundment. The bivalve <i>Corbicula fluminalis</i> was noticeably absent during the site-visit. This bivalve is particularly sensitive to elevated sediments, and its absence is probably associated with the periodic emptying of Boegoeberg Dam, which releases high concentrations of sediment. Other taxa that were expected but not observed included <i>Heptageniidae</i> , <i>Ecnomidae</i> , <i>Hirudinea</i> , <i>Sisyridae</i> , <i>Corixidae</i> and <i>Ceratopogonidae</i> . The most sensitive taxa recorded at the site were <i>Atyidae</i> ,
<i>Tricorythidae</i> and <i>Leptophlebiidae</i> . Elevated nutrients lead to excessive growth of epilithic algae, particularly during low-flow periods, and this reduces the suitability of substrates for colonisation of benthic invertebrates. The Chironomid <i>Cardiocladius africana</i> thrive under these conditions. Monthly data on aquatic invertebrates were collected at Gifkloof, near Upington, between 1991 and 1996 (Palmer 1997b). These data provide a reliable indication of the key ecological drivers that affect the diversity and abundance of benthic macroinvertebrates in the middle and lower Orange River. Very Low Flows: During very low flow (<16 m³/s) the river was characterised by clear water (Secchi depth > 47cm) and low concentrations of planktonic algae. The average number of macroinvertebrate taxa (29), the average number of SASS4 taxa (18), highest during these flow conditions. Taxa typically associated with very low flow included the filter-feeding midge <i>Rheotanytaxus luscus</i> , the sponge <i>Ephydatia fluviatilis</i> and the blackflies <i>Simulium adersi</i> and <i>S. ruficorne</i> . Low Flows: During low flow (16 to 59 m³/s) the river was characterised by moderate clarity (Secchi depth 25 to 47 cm) and moderate concentrations of planktonic algae both such as a serior propertical pla | C | 4 | | Component | PES Description | EC | Conf | |----------------|--|----|------| | | maintenance of a healthy invertebrate fauna in the middle Orange River therefore depends on maintaining, or at least simulating, natural flow fluctuations. Simulating natural flow fluctuations would also help to conserve threatened species, such as the blackfly <i>S. gariepense</i> , and help reduce population outbreaks of the pest <i>S. chutteri</i> . Stable Flows: Stable flows caused by impoundment are detrimental to taxa adapted to either low or high flow. However, unseasonally high flows were shown to be detrimental to aquatic invertebrates. The pest blackfly <i>S. damnosum</i> became abundant during a long period of stable, low-flow conditions in 1993. Other taxa whose abundance increased during stable flow conditions were the stonefly <i>Neoperla spio</i> , Turbellaria and the midges <i>Cardiocladius africanus</i> and <i>R. fuscus</i> , the muscid fly <i>Xenomyiasp</i> . and the sponge <i>E. fluviatilis</i> . The overall abundance of caddisflies and predators started declining after 20 days of constant flow, whereas the abundance of gatherers started declining after 15 days of constant flow. Water Temperature: Water temperature had a significant impact on invertebrates. Of particular interest was an inverse relation between the abundance of blackflies and caddisflies as water temperatures changed: blackflies were more abundant than caddisflies during cold conditions, whereas caddisflies were more abundant than blackflies during warm conditions. Benthic Algae: Benthic algae were usually abundant in late winter to early spring (July to September). They were most abundant when the water was moderately clear (Secchi depth >18 cm) or when the flow was less than 130 m³/s. There was a corresponding increase in the abundance of scrapers (mostly the midge Cardiocladius africanus) between August and October in most years. The ASPT was usually highest during low algal cover (<10 %). The middle and lower Orange River is mostly wide and the rapids are shallow. This means that primary production in most rapids in the Orange River is not limited at flows less t | | | | Riverine Fauna | abundance of <i>S. chutteri</i> consistently declined during <i>Microcystis</i> blooms. 75 of the expected 95 animal species (79%) potentially can occur in this segment. This comprises 45 aquatic and semi-aquatic species, 11 marginal habitat species, and 19 riparian species. The riparian vegetation habitats have not changed much, as most of the riparian trees of diverse structures are still intact to act as refuge, shelter, breeding and feeding habitats, and a migration route. However, the changes in flows (removal of higher flows) resulted in the marginal zone being vegetated with reeds and hygrophilous shrubs, eliminating mudflats and alluvial sandbars. | С | 3.6 | Table 4.3 EFR O2: Present Ecological State: Physico-Chemical | | Orange River | | WAT | WATER QUALITY MONITORING POINTS | | | | |--|--------------------------------|--|----------------|---------------------------------|---|---|--| | RIVER | | | RC | | r @ Boegoeberg Reser
(1966 – 1979; n=43 - 5 | ve (D73B; ecoregion II: 26.05)
7) | | | EFR SITE | O2 (D81B; ecoregion II: 28.01) | | PES | D7H008Q01 | 1) Orange River @ Boegoeberg Reserve (D73B; ecoregion II: 26.05) D7H008Q01 (2000 – 2009; n=348) 2) Data from diatom sample collection in 2005, 2008, 2009, 2010 | | | | | | | | | | lata gaps exist, particularly in the ity and EFR sites are <u>not</u> in the same | | | Water Quality Constituents | | | RC Value | PES Value | Category/Comment | | | | Inorganic salts (mg/L) TEACHA was not used for | | | data assessmen | t, as salinity levels not e | elevated. | | | | | 0- | 07.40 | 04.00 | T | |--------------------|--|------------------------|--|--| | | Ca
Cl | 37.40
20.36 | 34.06
46.28 | Concentrations similar for the PES, | | 0 11 1 | | | | except for sulphate, sodium and | | Salt ions | K | 3.70 | 3.99 | chloride which show increases from | | (mg/L) | Mg | 15.10 | 18.00 | the RC, particularly sulphate and | | | Na | 23.70 | 35.36 | chloride. | | | SO ₄ | 48.10 | 63.99 | | | Nutrients | SRP | 0.014 * | 0.022 | A category | | (mg/L) | TIN | 0.14 | 0.22 | A category | | | pH (5 th + 95 th %ile) | 7.05 + 7.91 | 7.71 + 8.60 | A/B category | | | Temperature | - | - | Site downstream of numerous | | Physical | Dissolved oxygen | - | - | dams upstream, with significant changes expected from natural. | | Variables | Turbidity (NTU) | - | Avg: 7.92
95 th %ile: 30.67 | Levels not very significant. A/B category (qualitative assessment) | | | Electrical conductivity (mS/m) | 35.68 * | 50.80 | A/B category. RC shows slightly elevated natural salt levels. | | | Chl a: periphyton (mg/m²) | - | - | - | | | Chl a: phytoplankton (μg/L) | - | 46.5 (n=2; 2008)
(Koekemoer, 2010) | E category | | Response variables | Macroinvertebrates | ASPT: 6.6
SASS: 165 | ASPT: 5.8
SASS: 116
MIRAI: 63.7% | C category (Palmer, 2010) | | | Fish community score | | FRAI: 66.9% | C category (Kotzé, 2010) | | | Diatoms | - | SPI: avg – 12.9
(n=4; Boegoeberg +
EFR O2) | B/C category (Koekemoer, 2010) | | | Fluoride (mg/L) | 0.452 | 0.260 | A category | | | Ammonia (mg/L) | 0.002 | 0.011 | A category | | | Aluminium (mg/L) | 0.02 ** | 0.166 (n=2; 2008)
(Koekemoer, 2010) | D category | | | Iron (mg/L) | - | 0.110 (n=2; 2008)
(Koekemoer, 2010) | No guideline + insufficient data | | Toxics | Arsenic (mg/L) | 0.02 ** | 297 (n=2; 2008)
(Koekemoer, 2010) | E category | | | Cadmium (mg/L) | 0.000 3 ** | 0.005 (n=2; 2008)
(Koekemoer, 2010) | E category | | | Lead (mg/L) | 0.002 ** | 0.011 (n=2; 2008)
(Koekemoer, 2010) | E category | | | Other | - | - | Impacts expected due to farming-
related pesticides and fertilizer use. | | OVERALL SI | TE CLASSIFICATION | C: 69.34% (fro | om PAI model) | | | | | | | | ^{*} boundary value for the A category recalibrated #### 4.3.1 EFR O2: Trend The trend was also assessed. Trend refers to the situation where the responses have not yet stabilised in reaction to
catchment changes. The evaluation is therefore based on the existing catchment condition. The trend at all components is stable (See Figure 4.8). #### 4.3.2 EFR O2: PES Causes and Sources The reasons for changes from reference conditions must be identified and understood. These are referred to as causes and sources ((http://cfpub.epa.gov/caddis/)). The PES for the components at EFR O2 as well as the causes and sources for the PES are summarised in Table 4.4. ⁻ no data ^{**} benchmark value, as no data Table 4.4 EFR O2: PES Causes and Sources | | PES | Conf | Causes | Sources | F ¹ /NF ² | Conf | |------------------------|-----|------|---|---|---------------------------------|------| | Hydro ³ | E | 3 | Increase in unseasonal releases of small floods, decrease of moderate and large floods. | Twice daily flood releases from
Vanderkloof dam for hydro power,
upstream dams | F | -5 | | Hy | | | Increased base flows during drought and dry seasons and decreased base flows during the wet season | Operation for irrigation and other users | F | | | Physico-
chemical | С | 3.5 | Elevated nutrients and potential toxicant loads due to fertilizer and pesticide use | Agriculture, resulting in some toxicant and nutrient loading expected. | NF | 4 | | ology | | | Reduced frequency and size of large floods | Large dams | F | 4 | | Geomorphology | С | 3.5 | Reduced sediment load | Although upstream dams have reduced
the sediment load, annual flushing of
the upstream dam reintroduces some
sediments | F | 2.5 | | Riparian
vegetation | В | 3.6 | Increased vegetation cover | Reduced base flows especially in summer and reduced moderate and large floods | F | 2.5 | | Rip | | | Altered species composition | Small percentage of perennial exotic species | NF | 4 | | | | | Decreased overhanging vegetation as cover for fish result in decreased FROC of species with preference for these habitats. Loss of habitat (cover) also results in increased exposure to predators. | Increased bank erosion, flow modification and inundation. Farming: removal or change in riverine vegetation. | F
NF | | | | | | Decrease in FROC and abundance of fish species with preference for fast habitats. | Decreased base flows. | F | - | | | | | Decreased water quality. | Presence of toxics, agriculture, dams trapping silt altering water clarity, stratification in dams | NF | - | | | | | Decreased species diversity and abundance | Presence of alien predatory species (GAFF) feeding on indigenous fish eggs and larvae. | NF | | | Fish | С | 3 | Increased turbidity and disturbed bottom substrates reduce bottom substrate quality and water quality for indigenous fish (especially impact on LUMB breeding habitats) | Presence of alien CCAR which cause bio-turbation. Dams create habitat for undesirable species. | NF | 3.5 | | | | | Decreased native species diversity and abundance as result of presence of alien species. | Alien species will have negative impact on native species - CCAR – bioturbation; GAFF - predation on eggs and fry; CIDE - loss of aquatic vegetation and habitat. | NF | | | | | | Decreased abundance, and therefore FROC related to over utilization for human consumption. | Poaching and over-fishing of fish using nets (gill and seine nets, often homemade). | NF | | | | | | Reduced spawning success resulting in decreased FROC of many species. | Flow modification: Absence of spring flushes, reduced habitat suitability and stimuli, flow pattern disrupts normal breeding cycle. | F | | | | | | Presence of migration barriers reduces migration success (breeding, feeding and dispersal) of some species. | Some dams/weirs (incl. Boegoeberg Dam) | NF | | | | | | Elevated low flows | Discharges to meet demands for winter power generation and irrigation demands | F | 4 | |---------------------------------|---|-----|--|--|------|---| | res' | | | Water quality deterioration | Agricultural return flows | F | 3 | | bra | | | Aseasonal releases | Operation of Vanderkloof Dam | F | 4 | | erte | С | 4 | Pesticides | Blackfly Control Programme | NF/F | 4 | | Macroinvertebrates ⁷ | | | Elevated sediment | Periodic emptying of Boegoeberg Dam
for maintenance, usually during winter
(i.e. low flow) | NF | 4 | | | | | Toxic algal blooms, such as Microcystis | Annual overturn of vanderkloof Dam, plus inputs from Harts River (Spitzkop Dam) | NF | 2 | | Fauna | | | Reduced abundance. Loss of habitat diversity due to reduced flow volumes Reduced abundance in piscivorous species - Reduction in fish abundance (due to reduction of habitat) as a food base for piscivorous species | Operation of the system. | F | | | Riverine Fauna | С | 3.6 | Impact adversely on instream biota that acts as food source for piscivores and invertivores | Operation of the system | F | 3 | | | | | Marginal zone invaded by reeds and shrubs, removing mudflat and alluvial sandbank habitats –habitat for waders | Loss of frequency and magnitude of larger floods | F | | 1 Flow related 2 Non Flow related 3 Hydrology The major issues that have caused the change from reference conditions are increased - Loss of frequency of large floods; - Agricultural return flows; - Higher low flows than natural in the dry season, drought and dry periods; - Decreased low flows at other times; - Annual release of sediment: - Present of alien fish species and barrier effects of dams. #### 4.3.3 EFR O2: PES EcoStatus To determine the EcoStatus, the macroinvertebrates and fish must first be combined to determine an instream EC. The instream and riparian categories are integrated to determine the EcoStatus. Confidence is used to determine the weight that the EC should carry when integrating into an EcoStatus (riparian, instream and overall). The EC percentages are provided (Table 4.5) as well as the portion of those percentages used in calculating the EcoStatus. Table 4.5 MRU: EFR O2: Instream | INSTREAM BIOTA | Importance
Score | Weight | |---|---------------------|--------| | FISH | | | | 1.What is the natural diversity of fish species with different flow requirements | 3 | 80 | | 2.What is the natural diversity of fish species with a preference for different cover types | 4 | 100 | | 3.What is the natural diversity of fish species with a preference for different flow depth classes | 3.5 | 90 | | 4. What is the natural diversity of fish species with various tolerances to modified water quality | 2.5 | 70 | | MACROINVERTEBRATES | | | | What is the natural diversity of invertebrate biotopes | 3.5 | 80 | | 2. What is the natural diversity of invertebrate taxa with different velocity requirements3. What is the natural diversity of invertebrate taxa with different tolerances to modified water quality | 2 | 100
50 | |--|-----|-----------| | Fish | 3 | | | Macroinvertebrates | 4 | | | Confidence rating for instream biological information | 3.6 | | | INSTREAM ECOLOGICAL CATEOGORY | С | | | Riparian vegetation | В | | | Confidence rating for riparian vegetation zone information | 3.6 | 6 | | ECOSTATUS | С | | # 4.4 RECOMMENDED ECOLOGICAL CATEGORY (REC): The REC is determined based on ecological criteria only and considers the EIS, the restoration potential and attainability there-of. The EIS is HIGH; therefore the REC should be set to improve the PES. The scenario to improve the PES includes the following: - Lower flows (70 100 % duration) which should not be more than natural flows as is presently the case. The seasonality ration between wet and dry season should also be improved. This situation will improve the black fly problems as well as a general improvement in the instream biota. - Higher low flows in the wet season. - Geomorphology will require improved large floods however that will not happen as there is no way to operate and provide the large floods. - Dredging of the dam should happen during the wet season. - Alien vegetation should be cleared (especially *Prosopis*). The water quality and geomorphology will not improve under this scenario (table 4.6). The FRAI, MIRAI and VEGRAI were run to determine the level of improvement that will be achieved. The fish and invertebrates will only improve within the C category. Another option that was investigated was that the releases from Vanderkloof should be well mixed and this will improve the water quality and the instream biota. It was however confirmed (Mane Maree *pers com*) that there is only one bottom outlet and that this is not a physical possibility. It was therefore not possible to provide flows to improve the situation to the REC. Table 4.6 EFR O2: REC | | PES | REC | Comments | Conf | |------------------------|-----|-----
---|------| | Physico-
Chemical | С | С | This cannot be achieved with the changes recommended, as the reasons for the water quality state is non flow-related. | n/a | | Geom | С | С | To improve the PES, it is necessary to reinstate the large floods that have been removed due to upstream dams. This is not possible, so the scenario was not considered further. | | | Riparian
vegetation | В | A/B | Removal of exotic woody species improves the PES from 85% to 85.6%. Improving seasonality and wet season base flows in the marginal zone (rating from 2 to 1) results in a further improvement to 86.6%. This is mainly facilitated by reduced cover in woody vegetation (mainly <i>Salix mucronata</i>) and grasses, with an associated increase in open bedrock and alluvium. Similarly, these hydrological changes in the lower zone further improve the PES to 88.3% (an EC of A/B). Vegetation response is a reduction in reed cover with an associated increase in open areas. | 2.7 | | | PES | REC | Comments | Conf | |--------------------|-----|-----|---|------| | Fish | С | С | Due to the hydrological change being so extreme at present, it is highly unlikely that conditions can be returned to a "largely natural" (Category B) condition, based on improved flows. The present ecological status is furthermore impacted by various non-flow related impacts (especially the presence of alien fish species and migration barriers), and without improvement of these impacts, conditions will not improve adequately to achieve a category B. The lack of water quality improvement associated with the recommended flow improvement to achieve the REC furthermore limits the fish assemblage to improve adequately to achieve a largely natural (B) conditions. | 2.5 | | Macroinvertebrates | С | С | Lower base flows during the dry season and a wider seasonal range of base flows is expected to increase habitat variability and thereby increase biodiversity, and also reduce the incidence of outbreaks of the pest blackfly <i>Simulium chutteri</i> . Taxa expected to appear under a more natural flow regime include <i>Corixidae</i> , <i>Ceratopogonidae</i> and <i>Hirudinae</i> . Improved operation of Boegoeberg, by not draining during the dry season, is likely to create conditions suitable for colonisation by <i>Corbiculiidae</i> and <i>Ancylidae</i> . The total number of SASS5 taxa is expected to increase to 26. The overall SASS Score is expected to be 156, and the ASPT 6.0. The category is likely to remain in Category C mainly because of water quality issues. | 3 | | Riverine
Fauna | С | В | Improving seasonality and wet season base flows in the marginal zone results in an improvement in open area habitats: a) reduced cover in woody vegetation and grasses, with an associated increase in open bedrock and alluvium b) reduction in reed cover. The increase in open areas results in the reclamation of mudflat and alluvial sandbar habitats which provide good foraging habitat for waders. | 3 | # 4.5 ALTERNATIVE ECOLOGICAL CATEGORY (AEC) ↓: The hypothetical scenario includes: - Decreased low flows in the wet and dry season. - Decreased flows - Decreased dilution resulting in worse water quality. - Reduced low flows will result in less light penetration which will result in algal and benthic growth. Each component is adjusted to indicate the metrics that will react to the scenarios. The rule based models are available electronically and summarised in Table 4.7. Table 4.7 EFR O2: AEC↓ | | PES | AEC↓ | Comments | Conf | |----------------------|-----|------|---|------| | Physico-
chemical | С | D | Increased abstractions result in lower low flows in the wet and dry seasons. This will result in higher temperatures, lower oxygen levels, and a small increase in turbidity, and elevations in nutrients, toxicants and salts. Fewer floods, resulting in decreased dilution of agricultural return-flows will exacerbate the situation. Lower (base) flows result in less light penetration, with a resulting increasing in algal and benthic growth. | 3 | | Geom | O | O | Further reduced floods and reduced low flows will cause a decline in the PES of the geomorphology, but within the category. This is because bedrock anatomising planforms – the reach type within which this site is situated – is extremely resilient to changes in both flow and also relatively resilient to changes in sediment. The expected change would thus be from a high C to a lower C. | 2 | | Rip veg | В | B/C | A further reduction of base flows, especially summer, as well as floods will result in additional woody (<i>S. mucronata</i> and <i>G. virgatum</i>) and non-woody (<i>P.</i> australis) cover in the lower and marginal zones. This is due to additional available habitat and reduced flooding disturbance will facilitate higher recruitment opportunities in the marginal zone. The overall PES remains a B, but the score has decreased. The PES of the marginal and lower zones however, has reduced to B/C (81.3%) since reduction of flows mainly affects these two zones. | 2.5 | |--------------------|---|-----|---|-----| | Fish | С | D | Decreased flows (loss of fast habitats) together with increased benthic algal growth on substrates (increased photic depth related to lower flows) will result in deterioration of riffle/rapid/run over rocky substrate habitats with a resultant negative impact on fish species with a requirement for this habitat type (esp. ASCL, BAEN, BKIM and LCAP). Further deterioration in flood regime will also negatively impact fish in terms of migratory cues, flushing of substrate to create good quality substrate for spawning, resulting in further deterioration of fish assemblage (especially BAEN and BKIM). Decreased water quality will furthermore impact some fish species (especially early life stages) negatively. Decreased flows may furthermore create more favourable conditions (slow habitats) for alien fish species (esp. CCAR & GAFF) which will result in increased impact on indigenous fish species. (marginal vegetation expected to not be impacted significantly, therefore species with a requirement for this cover feature should not be impacted significantly). | 2.8 | | Macroinvertebrates | С | D | Lower base flows during the dry and wet seasons is likely to reduce the incidence of outbreaks of the pest blackfly <i>Simulium chutteri</i> , but increase problems associated with <i>Simuliumimpukane</i> . A reduced seasonal range of base flows will also reduce water quality and habitat variability and thereby reduce biodiversity. Taxa expected to disappear include those that are sensitive to water quality deterioration, such as <i>Tricorythidae</i> , <i>Elmidae</i> , <i>Chlorocyphidae</i> , <i>Atyidae</i> and <i>Leptophlebiidae</i> . The total number of SASS5 taxa is expected to drop to 15. The overall SASS Score is expected to be 64, and the ASPT 4.3. | 3 | | Riverine
fauna | С | С | A further reduction of base flows, especially summer, as well as floods will result in an increase of vegetation cover in the lower and marginal zones, benefitting arboreal fauna. The mudflat and alluvial sandbar habitats will still be absent as reed
and other wetland shrubs will be covering the marginal zone, keeping out waders. | 3 | # 4.6 SUMMARY OF ECOCLASSIFICATION RESULTS Table 4.8 EFR O2: Summary of EcoClassification results | Driver
Components | PES | TREND | REC | AEC↓ | |--|--------|-------|----------|----------| | IHI
HYDROLOGY | E | | | | | WATER QUALITY | С | | С | D | | GEOMORPHOLOGY | С | 0 | С | С | | INSTREAM IHI | C/D | | | | | RIPARIAN IHI | B/C | | | | | Response
Components | PES | TREND | REC | AEC↓ | | FISH | С | 0 | С | D | | | | | | | | MACRO
INVERTEBRATES | С | 0 | С | D | | | C | 0 | C | D
D | | INVERTEBRATES | | | | _ | | INVERTEBRATES INSTREAM RIPARIAN | С | 0 | С | D | | INVERTEBRATES INSTREAM RIPARIAN VEGETATION | C
B | 0 | C
A/B | D
B/C | # 5 EFR O2 (BOEGOEBERG) – DETERMINATION OF STRESS INDICES Stress indices are set for fish and macroinvertebrates to aid in the determination of low flow requirements. The stress index describes the consequences of flow reduction on flow dependant biota. It therefore describes the habitat conditions for fish and macroinvertebrates indicator species for various low flows. These habitat conditions for different flows and the associated habitat conditions are rated from 10 (zero flows) to 0, which is optimum habitat for the indicator species. #### 5.1 INDICATOR SPECIES OR GROUP #### 5.1.1 Fish indicator group: Large semi - rheophilic species (BAEN) As a result of the absence of any true rheophilic fish species in this system, the large semi-rheophilic flow guild was selected as indicator group for setting flows. This group generally requires FS, FI and FD flow-depth categories over good quality substrate (gravel and cobbles) for spawning. Egg and embryo development also takes place in these habitats, while larvae prefer SD with substrate as optimal habitats. Juvenile and adult specimens have a high preference for SD, FS, FI and FD habitats with substrate and water column as cover. Flows should furthermore remain adequate to allow migration between reaches, thus depth in riffle and rapids should remain adequate, especially during the wet season. Emphasis was placed on the requirements of the *Labeobarbus* species (BKIM & BAEN) within this group in setting flows. Table 5.1 Summarised habitat requirements for different life stage of the large semirheophilic indicator group. | FISH
SP | SPAWNING | EGG & EMBRYO
DEVELOPMENT | LARVAE | JUVENILES | ADULTS | |------------|---|---|---|--|---| | BAEN | FS, FI over substrate. Spring to midsummer (September to January). Fast (>0.3m/s) with substrate (Gravel & cobbles). flowing water, well oxygenated and low sediments loads. BAEN breeds from spring through to mid-summer after the first substantial rains of the season. | FS with substrate (gravel/cobbles). Flows to last long enough for eggs to hatch and embryos to develop. Sudden pulse after spawning may cause many of the eggs to be washed out of the spawning beds and die in the deeper less oxygenated pools and also be smothered by silt. Also if the flow subsides it could result in higher temperatures and lower oxygen thus killing the developing embryos or leaving them stranded. The fertilised eggs of BAEN incubate for 3 to 8 days at 18-21.5 °C, whereafter the embryos remain in the gravel for a further period. | SD with substrate. (October to February). Cover, flow, oxygen and low silt loads. At swim-up they require suitable flows to move them away from the spawning beds to the nursery areas usually shallow backwaters which are warmer. If the backwaters are not there due to too high or too low flows the larval fish will die out as this is a very critical stage where they have to start eating. Larvae are initially inactive and sink to the bottom, not becoming mobile until 4 to 6 days after hatching. At this stage, they begin feeding on microscopic organisms. | FS, FI& SS with substrates. SD at night. | SD, FD,
FI& FS
with
substrates
and water
column. | | BKIM | FS &FD with substrates (gravel, cobbles) flowing water, well oxygenated and low sediments loads. The breeding season extends from mid to late summer. The species requires gravel beds in flowing water to spawn. | FS & FI with substrate (gravel/cobbles). Flows to last long enough for the embryos to develop and hatch out. The incubation period is 2 to 3 days and larvae become mobile after a further 3 to 4 days at 23-25 °C. | SD with substrate. | FI & SD with substrates. | SD, FD & FI with substrates and water column. | |------|---|---|--------------------|--------------------------|---| |------|---|---|--------------------|--------------------------|---| #### 5.1.2 Macroinvertebrate indicator group: *Amphipsyche scottae* Amphipsyche scottae is a flow-dependent hydropsychid caddisfly that is common in the middle and lower Orange River. This species prefers moderate to fast currents (0.6 to 0.8 m/s), with cobble substrates. This species is sensitive to deterioration in water quality. #### 5.2 STRESS FLOW INDEX A stress flow index is generated for every component, and describes the progressive consequences to the flow dependent biota of flow reduction. The stress flow index is generated in terms of habitat response and biotic response and is discussed below. ### 5.2.1 Habitat response The habitat flow index is described separately for fish and macroinvertebrates as an instantaneous response of habitat to flow in terms of a 0-10 index relevant for the specific site where: - 0 Optimum habitat (fixed at the natural maximum base flow which is based on the 10% annual value using separated natural baseflows). - 10 Zero discharge (Note: Surface water may still be present). The instantaneous response of fish and invertebrate breeding habitat, abundance, cover, connectivity, and water quality are derived by considering (amongst others) rated velocity depth classes (in terms of abundance) to flow changes based on a 0 - 5 scale where: - 0 = Velocity depth class is absent under the specific flow condition. - 1 = Velocity depth class is rare under the specific flow condition. - 2 = Velocity depth class is sparse under the specific flow condition. - 3 = Velocity depth class occurs moderately under the specific flow condition. - 4 = Velocity depth class occurs abundantly under the specific flow condition. - 5 = Velocity depth class is very abundant under the specific flow condition. Fish and invertebrate habitat is then rated separately according to a 0-5 scale where: - 0 = No habitat available. - 1 = Very low occurrence - 2 = Low occurrence - 3 = Moderate occurrence - 4 = Large/Good occurrence - 5 = Optimum occurrence #### 5.2.2 Biota response The biota stress index is the instantaneous response of biota to change in habitat (and therefore flow), based on a scale of 0 - 10 where: - 0 = Optimum habitat with least amount of stress possible for the indicator groups at the site (fixed at the natural maximum baseflow in the same way as for the habitat response). - 10 = Zero discharge. The biota response will depend on the indicator groups present, i.e. rheophilics will have left whereas semi-rheophilics will still be present and survive. The instantaneous response of fish and invertebrate breeding habitat, abundance, cover, connectivity, and water quality are derived by considering (amongst others) rated velocity depth classes (in terms of abundance) to flow changes based on a 0 (VD class absent) - 5 (VD class very abundant). Fish and invertebrate habitat is then rated separately according to a 0 (no habitat) - 5 (optimum occurrence of
habitat). #### 5.2.3 Integrated stress curve The integrated stress curve represents the highest stress for either fish or macroinvertebrates at a specific flow. The species stress discharges in Table 5.3 indicate the discharge evaluated by specialists to determine the biota stress. The highest discharge representing a specific stress is used to define the integrated stress curve (Figure 5.1). In this specific case, the LSR fish stress index represents the integrated stress range 6-10, therefore the blue curve (representing the LSR stress index) is lying 'beneath' the integrated stress line (black). The FDI stress index represents the integrated stress range 0-6, therefore the red curve (representing the FDI stress index) is lying 'beneath' the integrated stress line (black) (Figure 5.1). Figure 5.1 EFR O2: Species stress discharges used to determine biotic stress Table 5.2 EFR O2: Species stress discharges used to determine biotic stress | | Flow | (m ³ /s) | Integrated | |--------|-------|---------------------|----------------| | Stress | LSR | FDI | Flow
(m³/s) | | 0 | 171 | 171 | 171 | | 1 | 130 | 139 | 139 | | 2 | 103 | 126 | 126 | | 3 | 88 | 113 | 113 | | 4 | 72 | 75 | 75 | | 5 | 56 | 60 | 60 | | 6 | 43 | 48 | 48 | | 7 | 27 | 22 | 27 | | 8 | 15.1 | 14 | 15.1 | | 9 | 6 | 6 | 6 | | 10 | 0.001 | 0.001 | 0.001 | Table 5.3 provides the summarised biotic response for the integrated stresses. Table 5.3 EFR O2: Integrated stress and summarised habitat/biotic responses | Integrated stress | Flow (m ³ /s) | Driver (fish/inverts/both) | Habitat and/or Biotic responses | |-------------------|--------------------------|----------------------------|--| | 0 | 171 | Both | Habitat suitability for semi-rheophilic fish guild optimal for all criteria (spawning habitat, nursery habitat, abundance, cover, connectivity and water quality) evaluated. The turbidity is suitable for the threatened blackly Simulium gariepense. | | 1 | 139 | Invertebrate | Instream biotopes plentiful and suitable for flow-sensitive species. The river bed becomes light-limited, with Secchi depth typically 8 to 17 cm. The high turbidity favours the mayflies <i>Tricorythus discolor</i> and <i>Baetis glaucus</i> , and the caddisflies <i>Ampipsyche scottae</i> and <i>Aethaloptera maxima</i> . | | 2 | 126 | Invertebrate | Critical habitats sufficient for flow-sensitive taxa, except for those that prefer high turbidity. | | 3 | 113 | Invertebrate | High concentration of planktonic algae provides food for filter-feeding invertebrates such as <i>Simulium chutteri</i> and <i>Tricorythus discolor</i> . | | 4 | 75 | Invertebrate | The lower marginal vegetation starts to provide suitable habitat for invertebrates, such as the freshwater shrimp <i>Caridina nilotica</i> . | | 5 | 60 | Invertebrate | Moderate water clarity, with Secchi depth typically about 25 cm. Critical habitats very reduced. Conditions suitable for scrapers, such as Burnupia | | 6 | 48 | Invertebrate | Critical habitat residual and flow-sensitive species reduced. High water clarity, providing suitable conditions for taxa such as the midge <i>Cardiocladius africanus</i> , <i>Euthraulus elegans</i> and the blackfly <i>Simulium damnosum</i> . | | 7 | 27 | Invertebrate | No critical habitat. Most flow-sensitive taxa disappear. | | 8 | 15.1 | Fish | In terms of habitat suitability for large semi-rheophilic fish guild, spawning habitat, nursery habitat, abundance, cover, connectivity and water quality in very low condition and connectivity in low condition. | | 9 | 6 | Fish | In terms of habitat suitability for large semi-rheophilic | | Integrated stress | Flow (m ³ /s) | Driver
(fish/inverts/both) | Habitat and/or Biotic responses | |-------------------|--------------------------|-------------------------------|---| | | | | fish guild, nursery habitat, abundance, cover, connectivity and water quality are of very low suitability while no spawning habitat will be available. | | 10 | 0.001 | Both | Habitat not suitable for any of the criteria assessed (spawning habitat, nursery habitat, abundance, cover, connectivity and water quality) for the large-semi-rheophilic fish guild. | # 6 EFR O2 (BOEGOEBERG) - DETERMINATION OF EFR SCENARIOS #### 6.1 ECOCLASSIFICATION SUMMARY OF EFR O2 #### EFRO2 #### **EIS: HIGH** Highest scoring metrics are instream & riparian rare /endangered biota, unique riparian biota, flow intolerant instream biota, taxon richness of riparian biota, diversity of riparian habitat types, critical riparian habitat, refugia, migration corridor. #### PES: C Loss of frequency of large floods, agricultural return flows, higher low flows than natural in the dry season, drought and dry periods, decreased low flows at other times, release of sediment, presence of alien fish species &barrier effects of dams. #### REC: B/C Instream improvement was not possible due to constraints and no EFR will be set for REC. #### AEC D (instream) Decreased low flows in the wet and dry season. Decreased floods, decreased dilution resulting in worse water quality. Reduced low flows will result in less light penetration which will result in algal and benthic growth | Driver
Components | PES | TREND | REC | AEC↓ | |------------------------|------|-------|-----|------| | IHI
HYDROLOGY | E | | | | | WATER QUALITY | С | | С | D | | GEOMORPHOLOGY | С | 0 | С | C | | INSTREAM IHI | C/D | | | | | RIPARIAN IHI | B/C | | | | | Response
Components | PES | TREND | REC | AEC↓ | | FISH | С | 0 | С | D | | MACRO
INVERTEBRATES | С | 0 | С | D | | INSTREAM | С | 0 | С | D | | RIPARIAN
VEGETATION | В | 0 | A/B | B/C | | RIVERINE FAUNA | С | 0 | В | С | | ECOSTATUS | С | 0 | B/C | С | | | HIGH | | | | #### 6.2 HYDROLOGICAL CONSIDERATIONS The wettest and driest months were identified as March and September. Droughts are set at 95% exceedance (flow) and 5% exceedance (stress). Maintenance flows are set at 40% exceedance (flow) and at 60% exceedance (stress). ## 6.3 LOW FLOW REQUIREMENTS (IN TERMS OF STRESS) The integrated stress index is used to identify required stress levels at specific durations for the wet and dry month/season. #### 6.3.1 Low flow (in terms of stress) requirements The fish and macroinvertebrate flow requirements for different Ecological Categories (ECs) are provided in Table 6.1 and graphically illustrated in Figure 6.1. The results are plotted for the wet and dry season on stress duration graphs and compared to the Desktop Reserve Model (DRM) low flow estimates for the same range of ECs. The stress requirements (as a 'hand drawn line') are illustrated in Figures 6.1. For easier reference the range of ECs are colour coded in the Tables and figures: PES and REC Purple AEC ↓: Green Summarised motivations for the final requirements are provided in Table 6.2. Table 6.1 EFR O2: Species and integrated stress requirements as well as the final integrated stress and flow requirement | Duration | LSR stress | Integrated
stress | FDI stress | Integrated
stress | FINAL*
(Integrated
stress) | FLOW
(m³/s) | |-----------|------------|----------------------|------------|----------------------|----------------------------------|----------------| | PES C ECC | STATUS | FISH: C | | ROINVERTEBRA | TES: C | | | | | | DRY SEASON | | | | | 5% | 8.5 | 8.5 | 8.7 | 8.7 | 8.5 | 10.2 | | 30% | 7.3 | 7.3 | 7.4 | 7.8 | 7.3 | 22.7 | | 60% | 7.3 | 7.3 | 6.9 | 6.9 | 7.3* | 28.8 | | | | | WET SEASON | | | | | 5% | 7.2 | 7.2 | 6.8 | 6.8 | 6.8 | 30.8 | | 30% | 6.7 | 6.8 | 6.6 | 6.6 | 6.6 | 35.2 | | 60% | 5.1 | 5.5 | 5.4 | 5.4 | 5 | 60** | | AEC↓ C E | COSTATUS | FISH: D | MAC | ROINVERTEBRA | TES: D | | | | | | DRY SEASON | | | | | 5% | 9.2 | 9.2 | 9.1 | 9.1 | 9.1 | 5.3 | | 30% | 8.3 | 8.3 | 8.3 | 8.4 | 8.3 | 12.1 | | 60% | 7.6 | 7.6 | 7.3 | 7.7 | 7.6 | 19.2 | | _ | | | WET SEASON | | | | | 5% | 7.6 | 7.6 | 7.5 | 7.8 | 7.6 | 19.2 | | 30% | 7 | 7 | 6.8 | 7.1 | 7 | 27 | | 60% | 5.8 | 6.1 | 6.2 | 6.1 | 6.1 | 48 | *invertebrates requested slightly higher flows than present day therefore the final recommendation is based on the fish requirement ** this flow was recommended by riparian vegetation as the fish and invertebrate requirements are too low (54.4 m³/s) to maintain the vegetation PES Figure 6.1 EFR O2: Stress duration curve for a PES, REC and AEC Table 6.2 EFR O2: Summary of motivations | Month | % Stress
duration | Component stress | Integrated
stress | Flow m³/s | Comment | | | | | |-------|----------------------|------------------|----------------------|-----------|---|--|--|--|--| | PES: | EcoStatus F | FISH: C | | MA | ACROINVERTEBRATES: C | | | | | | Sep | 5% drought | 8.5
LSR | 8.5 | 10.2 | Habitat suitability will be very low in terms of providing cover/abundance, connectivity and water quality, but adequate to allow survival and maintenance of PES during droughts. | | | | | | 56 | 60%
maintenance | 7.3
LSR | 7.3 | 28.8 | Habitat suitability will generally be low in terms of proving cover/abundance, connectivity and water quality, but adequate to allow survival and maintenance of PES. | | | | | | Mar | 5% drought | | | 30.8 | This stress is slightly higher than the
present-day flow, but will maintain the PES. The average current speeds at this stress are lower than that preferred by the indicator taxon, <i>Amphipsyche scottae</i> , but there is no justification for requesting more flow than present. | | | | | | | 60%
maintenance | | | 60 | SEE TABLE 6.3 | | | | | | AEC | √: EcoStatus F | ISH: D | MA | CROIN | VERTEBRATES: D | | | | | | Sep | 5% drought | 9.1 FDI | 9.1 | 5.3 | Natural stress will be introduced into the system. The stress-duration is higher than the natural stress, and significantly higher than the present-day stress. Elevated low-flows at this time of the year are the main reason leading to outbreaks of pest blackflies. The requested stress will therefore reduce outbreaks of pest blackflies. | | | | | | | 60%
maintenance | 7.6
LSR | 7.6 | 19.2 | Habitat suitability will generally be very low to low in terms of providing cover/abundance, connectivity and water quality, but lower than under present scenario, resulting in deterioration in the fish assemblage. | | | | | | 10- | 5% drought | 7.6
LSR | 7.6 | 19.2 | Habitat suitability will generally be very low to low in terms of providing cover/abundance, connectivity and water quality and very low in terms of suitable spawning and nursery habitats, but lower than under present scenario, resulting in deterioration in the fish assemblage. | | | | | | Mar | 60%
maintenance | 5.8
LSR | 6.1 | 48 | Habitat suitability will generally be low to low in terms of providing cover/abundance, connectivity, water quality nursery habitats and very low in terms of suitable spawning habitat, but lower than under present scenario, resulting in deterioration in the fish assemblage. | | | | | # 6.3.2 EFR O2 Riparian vegetation verification of low flow requirements The low flow requirements as set by the instream biota is checked (and modified if necessary) to ensure that it caters for any riparian vegetation (specifically marginal) and riverine fauna. This verification is summarised in Table 6.3. Table 6.3 EFR O2: Verification of low flow requirements for instream biota to maintain riparian vegetation in the required EC. | | PES | | | | | | | | | | | | | |-----------------|--------|----------|------|-------------|------------------------------------|--|--|--|--|--|--|--|--| | Species | Season | Duration | Q | Height abov | nundation /
e water level
n) | Note | | | | | | | | | | | | | lower limit | upper limit | | | | | | | | | | G. virgatum | Dry | 5% | 10.2 | 0.52 | 1.51 | Mateu stucce in hinle and | | | | | | | | | C. marginatus | | | | 0.54 | 1.62 | Water stress is high and some mortality expected, | | | | | | | | | P. decipiens | | | | 0.55 | 1.01 | especially along the upper | | | | | | | | | P. lapathifolia | | | | 0.65 | 1.49 | limit of populations, but this | | | | | | | | | P. australis | | | | 0.70 | 1.62 | is usual for drought, even in the dry season. | | | | | | | | | S. mucronata | | | | 0.76 | 1.36 | the dry season. | | | | | | | | | G. virgatum | | 60% | 28.8 | 0.35 | 1.34 | Walandara Salah Ind | | | | | | | | | C. marginatus | | | | 0.37 | 1.45 | Water stress quite high, but normal for dry season and | | | | | | | | | P. decipiens | | | | 0.38 | 0.84 | because plants reduce | | | | | | | | | P. lapathifolia | | | | 0.48 | 1.32 | metabolic requirements, | | | | | | | | | P. australis | | | | 0.53 | 1.45 | survival will be sufficient for PES to be unaltered. | | | | | | | | | S. mucronata | | | | 0.59 | 1.19 | 1 L3 to be unaltered. | | | | | | | | | G. virgatum | Wet | 5% | 30.8 | 0.33 | 1.33 | Comparable to dry season | | | | | | | | | C. marginatus | | | | 0.36 | 1.44 | base flows, but during the wet season these flows are | | | | | | | | | P. decipiens | | | | 0.36 | 0.82 | likely to cause reproductive | | | | | | | | | P. lapathifolia | | | | 0.46 | 1.31 | failure / abortion. Survival of | | | | | | | | | P. australis | | | | 0.52 | 1.43 | existing vegetation is | | | | | | | | | S. mucronata | | | | 0.58 | 1.17 | however likely to be high and not likely to change the PES. | | | | | | | | | G. virgatum | | 60% | 60 | 0.11 | 1.11 | On average most | | | | | | | | | C. marginatus | | | | 0.14 | 1.22 | populations are not inundated, although up to 20 | | | | | | | | | P. decipiens | | | | 0.14 | 0.61 | cm of inundation can occur | | | | | | | | | P. lapathifolia | | | | 0.24 | 1.09 | at selected low points. These | | | | | | | | | P. australis | | | | 0.30 | 1.21 | base flows are sufficient to | | | | | | | | | S. mucronata | | | | 0.36 0.95 | | facilitate survival and,
together with small floods,
reproduction. The PES is not
likely to change. | | | | | | | | **Conclusion:** Low flow requirements for instream fauna will maintain the PES for riparian vegetation (in a B class), provided that class I floods are provided. Riparian zone structure and functionality will remain unchanged from current. Table 6.4 EFR O2: Verification of low flow requirements for instream biota to maintain riverine fauna in the required EC | Season | Duration | Q | Note | |--------|----------|------|---| | Dry | 5% | 10.2 | Some mortality expected in the riparian vegetation, especially along the upper limit of populations. This happened natural and the riverine fauna will be adapted to some loss in vegetation. Piscivorous animals will be fine since the fish population will not change much, and lowered water levels will improve the chances of obtaining fish as food. | | Dry | 60% | 28.8 | Water stress quite high, but normal for dry season and the vegetation survival will be sufficient to maintain the habitat for riverine fauna. | | Wet | 5% | 30.8 | Survival of existing vegetation is likely to be high and not likely to change the PES, and the riverine fauna will react accordingly. | | Season | Duration | Q | Note | |--------|----------|----|---| | Wet | 60% | 60 | These base flows are sufficient to facilitate survival and reproduction in the riparian vegetation, thus the PES is not likely to change and the riverine fauna will react accordingly. | **Conclusion:** Only during the dry season at 5% will the vegetation show a level of stress, however, the riverine fauna will not respond drastically if the changes in marginal vegetation are small. ## 6.3.3 Final low flow requirements To produce the final results, the DRM results for the specific category are modified according to specialists' requirements Figure 6.3. There are a range of options one can use to make these modifications, such as changing the total volume required for the year, specific monthly volumes, either drought or maintenance flow durations, seasonal distribution and changing the category rules and shape factors. To produce the final results, the DRM results for the specific category were modified according to specialists' requirements (Figure 15.2). There are a range of options one can use to make these modifications, such as changing the total volume required for the year, specific monthly volumes, either drought or maintenance flow durations, seasonal distribution and changing the category rules and shape factors. The following changes were required: - PES: C EC. - Maintenance seasonal distributions set to 0.56. - Wet season rules: - Shape factor set to 8. - Lower shift factor set to 94; Upper shift set to 10. - Low flow max (%): 101. - Dry season rules: - Shape factor set to 4. - Lower shift factor set to 100; Upper shift set to 0. - Low flow max (%): 130. - AEC down: D EC. - Drought and Maintenance seasonal distributions set to 1.2. - Wet season rules: - Shape factor set to 8. - Lower shift factor set to 94; Upper shift set to 10. - Low flow max (%): 101. - Dry season rules: - Shape factor set to 4. - Lower shift factor set to 90; Upper shift set to 0. - Low flow max (%): 130. - Small manual adjustment to dry season maintenance flows. #### **Dry Season (September)** Wet Season (March) Natural stress — Present Day stress — C (PES) Natural stress — Present Day stress — C (PES) — D (AEC ⊥) — D (AEC ⊥) 10 10 9 9 8 8 7 Ecological Stress Ecological Stress 2 2 1 0 0 10 90 10 80 90 100 20 60 80 0 20 $\%\, \mathsf{Time}\,\, \mathsf{Equalled}\, \mathsf{or}\, \mathsf{Exceeded}$ % Time Equalled or Exceeded Figure 6.2 EFR O2: Final stress requirements for low flows ## 6.4 HIGH FLOW REQUIREMENTS The high flow classes were identified as follows: - The geomorphologist and riparian vegetation specialist identified the range of flood classes required and listed the functions of each flood. - The instream specialists then indicated which of the instream flooding functions were addressed by the floods identified for geomorphology and riparian vegetation (indicated by a ✓ in Table 6.4). - Any of the floods required by the instream biota and not addressed by the floods already identified, were then described (in terms of ranges and functions) for the instream biota. Detailed motivations provided in Table 6.4 and final high flow results are provided in Table 6.5. Table 6.5 EFR O2: Identification of instream functions addressed by the identified floods for geomorphology and riparian vegetation | | | Fis | h flood | functi | ons | | | ertebr | | | | verin
auna | |
--|---|--|--|--
--	--	---	--
--		Geomorphology & riparian vegetation motivation	Migration cues & spawning
Persicaria decipiens, P. lapathitolia, Phragmites australis and Salix mucronata). Prevents establishment of upper zone (Acacia karoo) & terrestrial species in the lower zone. Required to begin inundation of the Crinum bulbispermum population which will support reproductive demands. Required during growing season (spring to summer: Nov - Jan). Required to flood lower zone riparian species (S. mucronata and P. australis) and inundate about 50% of the C. bulbispermum population. This will flush sediment in seasonal channels and facilitate recruitment opportunities at higher levels, but create flooding disturbance at the lower limits which also maintains habitat and vegetative patchiness. These floods may cause some scour in the marginal zone, again, important for maintaining patchiness and similarly maintain seasonal channels. Required during summer (Nov - Jan). Required to flood lower zone. Similarly, these floods are also useful for preventing terrestrialisation and expansion of exotic species but also prevent their encroachment into the lower zone. Similarly, these floods are also important to scour marginal and lower zone habitats and maintain open patches. Needed late in the growing season (Feb, Mar). Large and infrequent flood to inundate about 50% of the T. usneoides population. Important to maintain T. usneoides recruitment, but also to scour large sections of the macro-channel bed and maintain overall patchiness. Also creates flooding disturbance for upper zone and bank woody species such as S.pendulina, A. karoo and Z. mucronata. Useful to reduce exotic perennial species, especially P. glandulosa. Also activates lower limit of A. erioloba. Inundate channels in anatomising area behind island on right hand bank. Supply a mosaic of habitats for fish a embankments for nesting and tunnelling. Larger floods are important to scour marginal and lower zone habitats and maintain open patches resulti	Required to inundate 50 to 60% of marginal and lower zone vegetation (Gomphostigma virgatum, Cyperusmarginatus, Persicaria decipiens, P. lapathifolia, Phragmites australis and Salix mucronata). Prevents establishment of upper zone (Acacia karoo) & terrestrial species in the lower zone. Required to begin inundation of the Crinum bulbispermum population which will support reproductive demands. Required during growing season (spring to summer: Nov - Jan). Required to flood lower zone riparian species (S. mucronata and P. australis) and inundate about 50% of the C. bulbispermum population. This will flush sediment in seasonal channels and facilitate recruitment opportunities at higher levels, but create flooding disturbance at the lower limits which also maintains habitat and vegetative patchiness. These floods may cause some scour in the marginal zone, again, important for maintaining patchiness and similarly maintain seasonal channels. Required during summer (Nov - Jan). Required to begin inundation of Searsia pendulina (which is where the tree line starts). Will facilitate recruitment &vigour of upper zone woody species, but also prevent their encroachment into the lower zone. Similarly, these floods are also useful for preventing terrestrialisation and expansion of exotic species such as P. galndulosa. Activation of the Tamarix usneoides population (i.e. no inundation, but sufficient soil moisture to facilitate recruitment and maintain reproductive outputs). Larger floods are also important to scour marginal and lower zone habitats and maintain open patches. Needed late in the growing season (Feb, Mar). Large and infrequent flood to inundate about 50% of the T. usneoides population. Important to maintain T. usneoides recruitment, but also to scour large sections of the macro-channel bed and maintain overall patchiness. Also activates lower limit of A. erioloba. Inundate channels in anatomising area behind island on right hand bank. Supply a mosaic of habitats for fish and ever embankments for neesting and t	Required to inundate 50 to 60% of marginal and lower zone vegetation (Gomphostigma virgatum, Cyperusmarginatus, Persicaria decipiens, P. Iapathifolia, Phragmites australis and Salix mucronata). Prevents establishment of upper zone (Acacia karoo) & terrestrial species in the lower zone. Required to begin inundation of the Crinum builbispermum population which will support reproductive demands. Required during growing season (spring to summer: Nov - Jan). Required to flood lower zone riparian species (S. mucronata and P. australis) and inundate about 50% of the C. builbispermum population. This will flush sediment in seasonal channels and facilitate recruitment opportunities at higher levels, but create flooding disturbance at the lower limits which also maintains habitat and vegetative patchiness. These floods may cause some scour in the marginal zone, again, important for maintaining patchiness and similarly maintain seasonal channels. Required during summer (Nov - Jan). Required to begin inundation of Searsia pendulina (which is where the tree line starts). Will facilitate recruitment & Searsia pendulina (which is where the tree line starts). Will facilitate recruitment & Searsia pendulina (which is where the tree line starts). Will facilitate recruitment & Searsia pendulina (which is where the tree line starts). Will facilitate recruitment & Searsia pendulina (which is where the tree line starts). Will facilitate recruitment & Searsia pendulina (which is where the tree line starts). Will facilitate recruitment & Searsia pendulina (which is where the tree line starts). Will facilitate recruitment & Searsia pendulina (which is where the tree line starts). Will facilitate recruitment & Searsia pendulina (which is where the tree line starts). Will facilitate recruitment & Searsia pendulina (which is where the tree line starts). Will facilitate recruitment & Searsia pendulina (which is where the tree line starts). Will facilitate recruitment & Searsia pendulina (which is where the tree line starts). Will facilit	Required to inundate 50 to 60% of marginal and lower zone vegetation (Gomphostigma virgatum, Cyperusmarginatus, Persicania decipiens, P. lapathifolia, Phragmites australis and Salix mucronata). Prevents establishment of upper zone (Acacia Aaroo) & terrestrial species in the lower zone. Required to begin inundation of the Cinum bulbispermum population which will support reproductive demands. Required during growing season (spring to summer: Nov - Jan). Required to flood lower zone riparian species (S. mucronata and P. australis) and inundate about 50% of the C. bulbispermum population. This will flush sediment in seasonal channels and facilitate recruitment opportunities at higher levels, but create flooding disturbance at the lower limits which also maintains habitat and vegetative patchiness. These floods may cause some scour in the marginal zone, again, important for maintaining patchiness and similarly maintain seasonal channels. Required during summer (Nov - Jan). Required to begin inundation of Searsia pendulina (which is where the tree line starts). Will facilitate recruitment avigour of upper zone woody species, but also prevent their encroachment into the lower zone. Similarly, these floods are also useful for preventing terrestrialisation and expansion of exotic species such as P. galndulosa. Activation of the Tamarix usneoides population (i.e. no inundation, but sufficient soil moisture to facilitate recruitment and maintain reproductive outputs). Larger floods are also important to scour marginal and lower zone shabitats and maintain open patches. Needed late in the growing season (Fepk, Mar). Large and infrequent flood to inundate about 50% of the T. usneoides population. Important to maintain T. usneoides recruitment, but also to scour large sections of the macro-channel bed and maintain overall patchiness. Also creates flooding disturbance for upper zone and bank woody species such as S.pendulina, A. karoo and Z. mucronata. Useful to reduce exotic perennial species, especially P. glandulosa. Al
as S. pendulina, A. karoo and Z. mucronata. Useful to reduce exotic perennial species, especially P. glandulosa.	Required to inundate 50 to 60% of marginal and lower zone vegetation (Gomphostigma virgatum, Cyperusmarginatus, Persicaria decipiens, P. Iapathifolia, Phragmites australis and Salix mucronata). Prevents establishment of upper zone (Acacia karoo) & terrestrial species in the lower zone. Required to begin inundation of the Crinum bulbispermum population which will support reproductive demands. Required during growing season (spring to summer: Nov - Jan). Required to flood lower zone riparian species (S. mucronata and P. australis) and inundate about 50% of the C. bulbispermum population. This will flush sediment in seasonal channels and facilitate recruitment apoputatines at higher levels, but create flooding disturbance at the lower limits which also maintains habitat and vegetative patchiness. These floods may cause some scour in the marginal zone, again, important for maintaining patchiness and similarly maintain seasonal channels. Required during summer (Nov - Jan). Required to begin inundation of Searsia pendulina (which is where the tree line starts). Will facilitate recruitment dyopur of upper zone woody species, but also prevent their encroachment into the lower zone. Similarly, these floods are also useful for preventing encroachment into the lower zone. Similarly, these floods are also useful for preventing encroachment into the lower zone. Similarly, starting the second productive outputs). Larger floods are also useful for preventing terretiralisation and expansion of exotic species such as P. ganduloiza. Activation of the Tamarix usneoides recruitment, but also to scour large sections of the macro-channel bed and maintain reproductive outputs). Larger floods are also important to scour marginal and lower zone habitats and maintain open patches. Needed late in the growing season (Feb., Mar). Large and infrequent flood to inundate about 50% of the T. usneoides population. Important to maintain T. usneoides recruitment, but also to scour large sections of the macro-channel bed and maintain overall pa	Required to inundate 50 to 60% of marginal and lower zone vegetation (Gomphostigma virgatum. Cyperusmarginatus, Persicaria decipiens, P. Iapathifolia, Phragmites australis and Salix mucronata). Prevents establishment of upper zone (Acacia karoo) & terrestrial species in the lower zone. Required to begin inundation of the Crinum bulbispermum population which will support reproductive demands. Required during growing season (spring season) (Spring and facilitate recruitment along protruities at higher levels, but create flooding disturbance at the lower limits which also maintains habitat and vegetative patchiness. These floods may cause some scour in the marginal zone, again, important for maintaining patchiness and similarly maintains easonal channels. Required during summer (Nov - Jan). Required to begin inundation of Searsia pendulina (which is where the tree line starts). Will facilitate recruitment along our of the P. guindulosa. Activation of the Tamarix usneoides population (i.e. no inundation, but sufficient soil moisture to facilitate recruitment and maintain reproductive outpus). Larger floods are also useful for preventing encroachment into the lower zone. Similarly, these floods are also useful for preventing encroachment into the lower zone. Similarly, these floods are also useful for preventing encroachment into the lower zone habitats and maintain open patches. Needed late in the growing season (Feb. Mar). Large and infrequent flood to inundate about 50% of the T. usneoides population. Important to maintain T. usneoides recruitment, but also to socur large seccions of the macro-channel bed and maintain noverall patchiness. Also acrivates lower limit of 14 erioloba. Personal patch of the productive outpus. Larger floods are also useful to reduce exotic perennial species, especially P. glandulosa. Also acrivates lower limit of 14 erioloba. Inundate channels in anatomising area behind island on right hand bank. Supply a mosaic of habitats for fish and eventually for wetland fauna to forage embank	Required to inundate 50 to 60% of marginal and lower zone vegetation (Gomphostigma virgatum, Cyperusmarginatus, Persicaria decipiens, P. lapathifolia, Phragmites australis and Salix mucronata). Prevents establishment of upper zone (Acacia karoo) & terrestrial species in the lower zone. Required to begin inundation of the Crium bubbispermum population which will support reproductive demands. Required during growing season (spring to summer: Nov Jan). Required to flood lower zone riparian species (S. mucronata and P. australis) and inundate shout 50% of the C. bubbispermum population. This will flush sediment in seasonal channels and facilitate recruitment opportunities at higher levels, but create flooding disturbance at the lower instead of the comparison o
zone, again, important for maintaining patchiness and similarly maintain seasonal channels. Required during summer (Nov-Jan). Required to begin inundation of Searcia penduling withink is where the tree line starts). Will tacilitate recruitment Anyonic of Searcia penduling withink is where the tree line starts). Will tacilitate recruitment dynour of upper zone woody species, but also prevent their encreachment in the lower zone. Similarly, these floods are also useful for preventing terrestrialisation and expansion of exotic species such as P. galandulosa. Activation of the Tamarix usenoides population (i.e. no inundation, but stifficient soil moleture to Incident to Incident to Incident and maintain reproductive outputs). Larger floods are also important to socur marginal and lower zone habitats and maintain open patches. Needed late in the growing season (Feb. Mar). Larger and infrequent flood to inundate about 50% of the T. usneoides population, but stifficient to clailitate recruitment and maintain open patches. Needed late in the growing season (Feb. Mar). Larger loods are also important to	Assessment of Environmental Flow requirements: Volume 1: 50 Nov 2010 The number of high flow events required for each EC is provided in Table 6.5. The availability of high flows was verified using the observed data at gauge D7H008. Table 6.6 EFR O2: The recommended number of high flow events required	FLOOD RANGE (m³/s)	INVERTEBRATES
	Sep	37.215	36.958
--	------		Hydrology
of grazing and form lawns where it occurs. Lower Zone: LB dominated by open cobble with <i>T. usneoides</i> . RB is mainly reed dominated (<i>P. australis</i>) alluvium with <i>S. mucronata</i> . Upper Zone: LB has extensive open areas (cobble or alluvium) as a result of grazing and physical removal, with vegetation mainly comprised of riparian thickets (common species are <i>T. usneoides</i> , <i>A. karoo</i> , <i>R. pendulina</i> , <i>Z. mucronata</i> . <i>D. lycioides</i> , <i>E. pseudobenus</i> , <i>Lycium bosciifolium</i> , <i>A. erioloba</i> , <i>M. linearis</i> , <i>Prsopis glandulosa</i> , <i>P. velutina</i>). RB mainly reeds as lower, but also with open bedrock areas and a cobble/alluvium mixed ephemeral channel. Annual and bi-annual exotic species are abundant. Macro channel bank: Same as upper zone, with <i>Schotia affra</i> on the RB. Floodplain: Only occurs on LB and has been removed and transformed into agricultural land for grapes and vegetables.	B/C	3.8	
upstream trap sediment loads, but this is in some ways ameliorated by tributary inputs downstream of the dams. The impact of reduced sediment is also ameliorated by the concomitant reduction of floods.	NF	4	
availability (both fast and slow habitats), and condition (flushing of sediments). This will lead to an improvement of the FROC of most species (esp. ASCL, BAEN, BKIM, and BHOS). Recommended improved agricultural practices may result in an improvement in water quality (decreased nutrients, and toxic spills - herbicides/pesticides), and should benefit some fish species (especially during early life stages).			Macroinvertebrates
according to a 0 (no habitat) – 5 (optimum occurrence of habitat). #### 8.2.2 Biota response The biota stress index is the instantaneous response of biota to change in habitat (and therefore flow), based on a scale of 0 - 10 where: Assessment of Environmental Flow requirements: Volume 1: - 0 = Optimum habitat with least amount of stress possible for the indicator groups at the site (fixed at the natural maximum baseflow in the same way as for the habitat response). - 10 = Zero discharge. The biota response will depend on the indicator groups present, i.e. rheophilics will have left whereas semi-rheophilics will still be present and survive. The instantaneous response of fish and invertebrate breeding habitat, abundance, cover, connectivity, and water quality are derived by considering (amongst others) rated velocity depth classes (in terms of abundance) to flow changes based on a 0 (VD class absent) - 5 (VD class very abundant). Fish and invertebrate habitat is then rated separately according to a 0 (no habitat) - 5 (optimum occurrence of habitat). # 8.2.3 Integrated stress curve The integrated stress curve represents the highest stress for either fish or macroinvertebrates at a specific flow. The species stress discharges in Table 8.1 indicate the discharge evaluated by specialists to determine the biota stress. The highest discharge representing a specific stress is used to define the integrated stress curve. Figure 8.1 illustrates this graphically. In this specific case, the FDI stress index represents the integrated stress index (these values are the highest flow for a stress) for stress 0 - 10, therefore the red curve (representing the FDI stress index) is lying 'beneath' the integrated stress line (black) (Figure 8.1). Figure 8.1 EFR O3: Species stress discharges used to determine biotic stress Table 8.1 EFR O3: Species stress discharges used to determine biotic stress		Flow	Integrated
------------	----------------------	----------------------------------	----------------
just activated, with enough moisture to perform summer biological requirement, but some encroachment towards the instream is likely. Base flows are sufficient to facilitate survival and, together with small floods, reproduction.			
Breeding and hatching cues	Clear fines	Scour substrate	Reach or inundate specific areas
26.514	25.094	22.840	19.539
(Conservation status: Endangered); - Unique Aquaticinstream biota: Some fish species endemic to the Orange System (ASCL, BAEN, LCAP). BTRI in lower Orange possibly unique population. BHOS endemic to lower Orange, MBRE isolated population in Orange; - Unique riparian biota: Orange River white-eye restricted to catchment, paradise frog (SA endemic), 6 endemic vegetation plants; - Riparian migration corridor: An interrupted riparian zone (denuded, trampling, less recruitment) provide a suboptimal migration corridor; - National parks, wilderness areas, reserves, heritage sites, natural areas: Richtersveld National Park; Ais-Ais National Park. ## 10.2 REFERENCE CONDITIONS The reference conditions for the components in EFR O4 are summarised below in Table 10.1 Table 10.1 EFR O4: Reference conditions	Component	Reference conditions	Conf
---	----	------	
riparian woody cover and abundance	Physical disturbance and removal, especially due to road and canal construction and maintenance (LB)	NF	5
increase habitat variability and thereby increase biodiversity, and also reduce the incidence of outbreaks of the pest blackfly <i>Simulium chutteri</i> . Taxa expected to appear under a more natural flow regime and improved management of irrigation return flows include taxa that are found in marginal vegetation, such as Belostomatidae, Coenagrionidae and Notonectidae, as well as taxa that are sensitive to water quality deterioration, such Hydropsychidae (>2 spp), Leptophlebiidae and Corduliiae. Other taxa expected to benefit from these conditions are Porifera, Hydroptilidae and Ceratopogonidae. The total number of SASS5 taxa is expected to increase to 19. The overall SASS Score is expected to be 118, and the ASPT 6.2.	2		Riverine Fauna
rheophilics will have left whereas semi-rheophilics will still be present and survive. The instantaneous response of fish and invertebrate breeding habitat, abundance, cover, connectivity, and water quality are derived by considering (amongst others) rated velocity depth classes (in terms of abundance) to flow changes based on a 0 (VD class absent) - 5 (VD class very abundant). Fish and invertebrate habitat is then rated separately according to a 0 (no habitat) - 5 (optimum occurrence of habitat). # 11.2.3 Integrated stress curve The integrated stress curve represents the highest stress for either fish or macroinvertebrates at a specific flow. The species stress discharges in Table 11.1 indicate the discharge evaluated by specialists to determine the biota stress. The highest discharge representing a specific stress is used to define the integrated stress curve. Figure 11.1 illustrates this graphically. In this specific case, the LSR fish stress index represents the integrated stress range 7-10. Therefore the blue curve (representing the LSR stress index) is lying 'beneath' the integrated stress line (black). The FDI stress index represents the integrated stress range 0-7, therefore the red curve (representing the FDI stress index) is lying 'beneath' the integrated stress line (black) (Figure 11.1). Figure 11.1 EFR O4: Species stress discharges used to determine biotic Table 11.1 EFR O4: Species stress discharges used to determine biotic stress		Flow	(m³/s)
RO INVERTEBRA	TES: D		
PD stress curves were used for this site.) - PES: C EC. - Drought seasonal distribution did not change. - Maintenance seasonal distribution set to 0.8. - Wet season rules: - Shape factor set to 9. - Lower shift factor set to 95; Upper shift set to 0. - Low flow max (%): 130. - Dry season rules: - Shape factor set to 4. - Lower shift factor set to 95; Upper shift set to 0. - Low flow max (%): 100. - REC: B/C EC. - Drought seasonal distribution did not change. - Maintenance seasonal distribution set to 0.6. - Wet season rules: - Shape factor set to 8. - Lower shift factor set to 95; Upper shift set to 0. - Low flow max (%): 130. - Dry season rules: - Shape factor set to 6. - Lower shift factor set to 95; Upper shift set to 0. - Low flow max (%): 140. - AEC down: D EC. - Drought and Maintenance seasonal distributions set to 0.8. - Wet season rules: - Shape factor set to 8. - Lower shift factor set to 95; Upper shift set to 0. - Low flow max (%): 130. - Dry season rules: - Shape factor set to 4. - Lower shift factor set to 95; Upper shift set to 10. - Low flow max (%): 100. Figure 12.2 EFR O4: Final stress requirements for low flows ## 12.4 HIGH FLOW REQUIREMENTS Detailed motivations provided in Table 12.5 and final high flow results are provided in Table 12.6. Table 12.5 EFR O4: Identification of instream functions addressed by the identified floods for geomorphology and riparian vegetation	(m3/s) SS peak)		Fish flood functions
1:5	1:3	1:3	
Oct	31.766	31.447	30.704
day MAR (<100% of nMAR). Present day MAR is close to natural as there is some use upstream.	A/B	2	
13.4 EFR C5: PES causes and sources		PES	Conf
substrates is expected to decrease through increased growth of benthic algae. Most taxa recorded at the site are tolerant of water quality, so biomonitoring scores are unlikely to drop dramatically. The only taxon that is expected to disappear under this scenario is Leptophlebiidae. In addition, the overall biodiversity is expected to drop through loss of taxa such as Empididae and Hydraenidae. The total number of SASS5 taxa is expected to drop to 14. The overall SASS score is expected to be 60, and the ASPT 4.3.	2	The above information indicates that the fish will decrease to an E as it is already in a very low D EC. It was therefore decided that any further abstraction will decrease the fish EC and EFR scenario for this will not assessed. # 13.6 SUMMARY OF ECOCLASSIFICATION RESULTS Table 13.7 EFR C5: Summary of EcoClassification results	Driver Components
the wet and dry month/season. #### 15.3.1 Low flow (in terms of stress) requirements The fish and macroinvertebrate flow requirements for different ECs are provided in Table 15.1 and graphically illustrated in Figure 15.1. The results are plotted for the wet and dry season on stress duration graphs and compared to the Desktop Reserve Model (DRM) low flow estimates for the same range of ECs. The stress requirements (as a 'hand drawn line') are illustrated in Figures15.1. For easier reference the range of ECs are colour coded in the tables and figures: PES and REC: Green Summarised motivations for the final requirements are provided in Table 15.2. Table 15.1 EFR C5: Species and integrates stress requirements as well as the final integrated stress and flow requirement	Duration	LSR stress	Integrated stress
-------------------------	-------------------------------------	----------------------------	-------------
--	------		Hydrology
carries sediments.			
channel through reased gravel and deep habitats and result in a slight improvement of the EC.			
8	1.15	Fish	In terms of habitat suitability for LSR fish guild, all criteria are of very low suitability.
Dry drought	0.12	0.92	2.53
3.892	0.15		
1.002	3.307	3.010	2.000
	Inorganic salts (mg/L)	TEACH	HA was not used fo
improve as exotic species are removed.			Fish
macroinvertebrates	Integrated stress	Flow (m ³ /s)	Driver (fish/inverts/both)
the target indicator group for this site. Average current velocities are 0.25 m/s, which is within the lower-range suitable for the indicator group.			5% drought
only way to improve the PES to B/C (REC) was to also remove aliens plants. From a flow perspective these flows are not likely to change the			
in Table 11.4. The high flows were checked using gauge D1H011. Table 21.5 EFR K7: The recommended number of high flow events required	FLOOD RANGE (m³/s)	INVERTEBRATES	FISH
8.352	5.485	4.596	3.454
was based on the present condition which considered the very temporary impacts of reed spraying. If one ignored this, the wetland would score HIGH (it only required the improvement of one metric from a score of 2 to 3). The uniqueness of the wetland habitat in this dry region also contributed to the decision that the EIS should be HIGH. The highest scoring metrics were: - Rare and endangered: Carletonville Dolomite Grassland with 1.8% protected and 76% remaining. Part of veldtype would be in riparian zone. *Gunnera perpensa* possibility that it could occur. *Crinum* sp. - Unique: Barbus brevipinnis (BBRI) and Tilapia sparrmanii (TSPA (potential new species)). Unique, new species of invertebrates (JLB Smith report, 1994). - Refugia and critical habitat: Refuge due to permanent water and good water quality. - Proclaimed areas: Currently a conservancy. In the process of being proclaimed a Natural Protected Environment (NEMA⁴). ## 22.2 REFERENCE CONDITIONS The reference conditions for the components in EFR M8 are summarised below in Table 22.1 Table 22.1 EFR M8: Reference conditions	Component	Reference conditions	Conf
australis</i>), bullrushes (T. capensis), aquatic vegetation (<i>P. sweinfurthii</i>) and Pesicaria <i>spp</i> . The wetland was divided into 2 section for vegetation assessment. The upper wetland extended from the weir to the first road crossing, about 240m of wetland (Figure 22.1) and the lower wetland from the same road crossing (with culvert) to the next road crossing (with steel pipes), about 1350m of wetland (Figure 22.1). The distinction was made because each section of wetland falls between distinct hydraulic controls and because the structure and composition of wetland vegetation differs. In the upper wetland it is apparent that there is a canalised area where most of the flow occurs and this affects the vegetation structure: Wetter areas facilitate taller and more dense reed stands while dryer areas reduce reed stature, density and fecundity. In the lower wetland there was a "dead zone" where no plants were growing, but dead plant matter indicate that they were at some time before the assessment. Anecdotal data suggest that herbicide application in 2006 caused large-scale plant death. Some areas have been subsequently colonised, others remain uncolonised with high amounts of rotting plant matter. Plant species form a patchy mosaic within the wetland and this is not the structure one would expect for a peat land in reference condition. Expectations for reference would not include deep pool areas, and would be dominated by extensive stands of <i>P. australis</i> . The occurrence of large stands of <i>Typha capensis</i> , <i>Presicaria sp</i> and <i>Potamogeton</i> species are all deviations from the reference condition. Impacts include altered vegetation composition and structure, and likely altered passage of water through the wetland due to canalisation and backup from hydraulic controls. Impacts also include the presence of exotic species.	C/D	3.4	
В		GEOMORPHOLOGY	В
*Phragmites*has a higher tolerance to drying than *Typha capensis* which would occur in the lower, wetter part of the reed zone. Wetter environments such as current conditions would favour the establishment of *T. capensis* especially if reeds are being poisoned and/or removed. Increasing overall wetland dryness would afford *P. australis* a competitive advantage and species compositional shifts towards reeds would occur as water levels drop. The same principle would apply to grasses and sedges on the outskirts, thus too much drying (or incision) would reduce reed cover and density on the outer edges and grasses and sedges would increase. Table 23.2 Consequences of the scenarios on riparian vegetation	Sc	EC	Motivation
scoring metrics are instream and riparian rare and endangered biota, unique riparian biota, instream biota intolerant to flow, taxon richness of riparian biota, critical riparian habitat and refugia and riparian migration corridor. ### PES: C The major issues that have caused the change from reference conditions are the releases for hydropower, barrier effects of the dams, water quality problems and the destruction of and removal of vegetation on floodplains for agriculture. The dominant factor seems to be the hydro-electric releases.	Driver Components	PES	TREND
EcoClassification where: - Data availability: Evaluation based on the adequacy of any available data for interpretation of the Ecological Category and AEC. - EcoClassification: Evaluation based on the confidence in the accuracy of the Ecological Category. The confidence score is based on a scale of 0-5 and colour coded where: 0 - 1.9: Low 2 - 3.4: Moderate 3.5 - 5: High These confidence ratings are applicable to scoring provided in this chapter. Table 24.2 Confidence in EcoClassification		Data availability	
EFR C5	3.5	1	
hence confirming the flood requirements identified through sediment transport modelling to the morphological indicators was not very clear, and similarly the vegetation specialist had slightly lower confidence at this site than the upstream EFR O2 and O3. | | | | | | | | | | | | Fish: The floods recommended will be adequate to ensure that all applicable flood requirements by the fish assemblages (including migration ques, flushing of sediment, etc.) will be provided. | | | | | | | | | | | Macroinvertebrates: The high flows requested will provide adequate mobilisation of the stream bed to maintain benthic habitat and appropriate triggers to stimulate hatching of macroinvertebrate eggs. | | EFR C5 | 4.5 | 4 | 3 | 3 | Riparian vegetation: The high flows that have been set will maintain the EC (PES = C for riparian vegetation) and are based on vegetative cues at the site and well surveyed vegetation points and a hydraulic profile. | 3 | | | | H3 | | | | | Geomorphology: The confidence at this site is low because: There are no clear morphological cues. The channel is rapidly eroding, so any high banks and terraces are not related to the contemporary hydraulics of the site (channel is deepening and widening, so the flows that deposited terrace sediments no longer reach those stages as often). The available hydrology – vital for undertaking sediment transport potential to identify key flow categories for channel maintenance – is derived from a gauge far (60 km) downstream, and the gauge itself does not record accurate flows. However, using scaled hydrological data, the results from the sediment transport modelling coincide moderately well with the other biotic cues at the site. | | | | | | | | | | Fish: The floods recommended will be adequate to ensure that all applicable flood requirements by the fish assemblages (including migration ques, flushing of sediment, etc) will be provided. | | | | | | | | | | Macroinvertebrates: The high flows requested will provide adequate mobilisation of the stream bed to maintain benthic habitat and appropriate triggers to stimulate hatching of macroinvertebrate eggs. Riparian vegetation: The high flows that have been set will maintain the EC (PES = B for | | | | | EFR C6 | 4.5 | 4 | 3 | 3 | riparian vegetation) and are based on vegetative cues at the site and well surveyed vegetation points. The flood requirements for geomorphology seem to be slightly higher, but this will not change the EC for riparian vegetation. | 3 | | | | th | | | | | Geomorphology: The confidence at this site is moderate to low because: - There are few clear morphological cues. - The channel is aggrading due to the assumed backup impacts of the dam, the very elevated sediment inputs from upstream and occasional bottom release sediment from the upstream dam. This is smothering the morphology, and also means that very large floods have lost their ability to scour the bed. This reach is therefore storing increasing volumes of sediment, altering hydraulic profiles and reducing access of biota to the original coarse bed sediment habitats. Additionally, the available hydrology – vital for undertaking sediment transport potential to identify key flow categories for channel maintenance – is derived from a gauge far upstream of the EFR site. | | | | | 3 K7 | LY 4.5 4 | 4 | 3 | 3 | Fish: The floods recommended will be adequate to ensure that all applicable flood requirements by the fish assemblages (including migration ques, flushing of sediment, etc.) are provided. | 3 | | | | iii iii | | 4 | Ü | | Macroinvertebrates: The high flows requested will provide adequate mobilisation of the stream bed to maintain benthic habitat and appropriate triggers to stimulate hatching of macroinvertebrate eggs | Ü | | | | EFR SITE | FISH | MACRO-
INVERTEBRATES | RIPARIAN
VEGETATION | GEOMORPHOLOGY | COMMENT | | |----------|------|-------------------------|------------------------|---------------|---|--| | | | | | | Riparian vegetation: The high flows that have been set will maintain the EC (PES = C for riparian vegetation) and are based on vegetative cues at the site and well surveyed vegetation points and a hydraulic profile. | | | | | | | | Geomorphology: The confidence at this site is high because: There are morphological cues. The available hydrology is derived from a long (40 year) record from a relatively reliable gauge immediately upstream of the site and the high flow hydrology is only moderately altered from Reference. There are no large dams, or extensive catchment-wide erosion, so the sediment load is relatively natural. This reach is therefore close to Reference condition, and the hydrological records and sediment data are representative of the original condition. | | ## 24.2.2.3 Hydrology confidence Note: If natural hydrology is used to guide requirements, then that confidence will carry a higher weight than normal. Hydrology confidence is provided from the perspective of its usefulness to EFR assessment. This will be different than the confidence in the hydrology for water resources management and planning. The scale of requirements is very different, and that is why high confidence hydrology for water resource management purposes often does not provide sufficient confidence for EFR assessment. The confidence in hydrology is provided in Table 24.8. Table 24.7 Confidence in hydrology | EFR site | Natural hydrology | Present hydrology | Observed hydrology | Local
knowledge/information | Comment | | Confidence: Average | | | |------------|-------------------|-------------------|--------------------|--------------------------------|---|-----|---------------------|--|--| | 02 | 3.5 | 3 | 5 | 3 | Due to the availability of an observed gauge at the site with a long data record, the confidence is relatively high. | 3.3 | 3.5 | | | | О3 | 3.5 | 1.5 | 1 | 2 | There are two gauges upstream and downstream of the site. Due the significant
listance between the gauges and the site, it was assumed that the present hydrology did
not necessarily reflect the flows at the site. These gauges could also not be used to set
low requirements | | | | | | 04 | 3 | 2.5 | 3 | 2 | ven though a gauge was located very close to the site, the gauge did not measure low ows accurately. | | | | | | C5 | 2.5 | 2.5 | 0 | 1.5 | No gauge for observed hydrology was available close to the site. The available Caledon and of the control of the site of the site. The available Caledon and the calculate present day hydrology as the present uses in the catchment was not known. | | | | | | C6 | 3 | 2 | 1 | 3.5 | There was no gauge located nearby and the present hydrology did not reflect the observations regarding zero flows in the area. | | | | | | K 7 | 4 | 2 | 4 | 0.5 | A gauge was available close to the EFR site with good daily data. Present day hydrology confidence was moderate only as there was not extensive re-evaluation of present uses. | | | | | | М8 | 4 | 4 | 4 | 2.5 | The site is immediately below a gauge, an as the norml EFR process was not required, this data was more than adequate for the process followed. | | | | | #### 24.2.2.4 Overall confidence The overall confidence in the results are linked to the confidence in the hydrology and hydraulics as the hydrology provides the check and balance of the results and the hydraulics convert the requirements in terms of hydraulic parameters to flow. Therefore, the following rationale is applied when determining the overall confidence: - If the hydraulics confidence is lower than the biological responses column, the hydraulics confidence becomes the overall confidence. Hydrology confidence is also considered, especially if used to guide the requirements. - If the biological confidence is lower than the hydraulics confidence, the biological confidence becomes the overall confidence. Hydrology confidence is also considered. If hydrology is used to guide requirements, than that confidence will be overriding. Table 24.8 Overall Confidence in EFR results | Site | Hydrology | Biological responses
Low flows | Hydraulic: Low Flows | OVERALL: LOW FLOWS | Biophysical responses: High flows Hydraulics: High Flows OVERALL: HIGH FLOWS | | COMMENT | | | |--------|-----------|-----------------------------------|----------------------|--------------------|---|--|---|--|---| | EFR 02 | 3.5 |
2.7 | 2.5 | 2.5 | Hydraulic confidence is not high as the measured flows were all higher than the flows required. | assured flows were all higher than the | | Even though the hydraulics confidence was high, the biophysical responses was moderate and that became the overall confidence. | | | EFR 03 | 2 | 3 | 2 | 2 | ne hydraulic confidence was lower than a biological responses, this became a 3.5 b was high, lower (alth | | Even though the hydraulics confidence was high, the biophysical responses was lower (although still high) and that became the overall confidence. | | | | EFR 04 | 2.6 | 3 | 2.5 | 2.5 | ee above. 2.8 2.8 was | | Even though the hydraulics confidence was high, the biophysical responses were moderate and that became the overall confidence. | | | | EFR C5 | 1.6 | 3.5 | 3.5 | 3.5 | The hydraulic and biological confidences are both high. | 3 | 3 | 3 | The hydraulic and biolophysical confidence are both moderate. | | EFR C6 | 2.4 | 3 | 2 | 2 | See above for hydraulic confidence. As
the hydraulic confidence was lower than
the biological responses, this became
the overall confidence. | 3 | 4 3 | | Even though the hydraulics confidence was high, the biophysical responses were moderate and that became the overall confidence. | | EFR K7 | 2.6 | 3 | 3 | 3 | The hydraulic and biological confidences are both moderate. | 3 | The hydraulic and biolophysical confidence are both moderate. | | | #### 24.2.3 RECOMMENDATIONS The low flow confidences range from MODERATE to HIGH with only EFR C5 rated as high. This is due to high confidence hydraulics and biological response information. Even though the hydrology is low, this does not play a significant role, as flow is not the driver at this site. Hydraulics confidences range from 2 - 2.5 for EFR O2, O3, O4 and C6. The confidence can only be improved by obtaining additional low flow calibration data that at lower flows than measured during the study. The confidence in biological information is mostly moderate as only one survey was undertaken. Additional surveys in different seasons should be undertaken to refine the baseline. The high flow confidences range from MODERATE to HIGH with only EFR O3 rated as high due to high confidence hydraulics and biological response information. The hydraulic confidence at EFR C5 and K7 were moderate as flood conditions were absent at these sites during hydraulic calibration. However an improvement in hydraulic confidence alone will not improve the overall confidence and therefore the confidence in biophysicl responses should also be improved by undertaking monitoring. It is strongly recommended that an Ecological Water Resources Monitoring (EWRM) programme is initiated as soon as possible. The information gathered during this study is suitable for the baseline, but if too much time relapses between the baseline and monitoring, new surveys and EcoClassification process will have to be undertaken. Table 24.10 provides a summary of the recommendations. Table 24.9 Summary of recommendations required to improve confidences | EFR sites | Low flow confidence | High flow confidence | Recommendations | |-----------|---------------------|----------------------|---| | O2 | 2.5 | 3.3 | Initiate EWRM programme. Obtain hydraulic low flow calibrations. | | О3 | 2 | 3.5 | Initiate EWRM programme.Obtain hydraulic low flow calibrations. | | O4 | 2.5 | 2.8 | Initiate EWRM programme.Obtain hydraulic low flow calibrations. | | C5 | 3.5 | 3 | Initiate EWRM programme. Obtain hydraulic high flow calibrations. | | C6 | 2 | 3 | Initiate EWRM programme. Obtain hydraulic low flow calibrations. | | K7 | 3 | 3 | Initiate EWRM programme. Obtain hydraulic low and high flow calibrations. | | M8 | | | Hydraulic confidence in the areas of the wetland that does not receive backup from the crossing was moderate (3). It is however not recommended that more hydraulic calibrations are done as it would be more cost-effective to implement the recommendation (Sc 2 - lowering the Bosbokpark crossing by 2.2 m) and monitoring the biological responses. Monitoring should include the impact on the lower wetland to determine whether the required improvements in these sections are achieved. | ## 25 REFERENCES - Agnew J. D. 1965. A note on the invertebrate fauna in the lower Orange River. South African Journal of Science 61: 126-128. - Birkhead, A.L. (2010). The role of Ecohydraulics in the South African Ecological Reserve. In: Ecohydraulics for South African Rivers, James, C.S. and King, J.M. (eds), Water Research Commission report no. TT K5/1767/1, Pretoria, South Africa. - Brown C and King, J. (2001) Environmental flow assessment for rivers. A summary of the DRIFT process. Southern Waters information Report No 01/00. - De Kock, K.N., Pretorius, S.J., Van Eeden, J.A. 1974 Voorlopige kommentaar aangaande die voorkoms van die waterslakke in die Oranjerivier Die Opvanggebied report, paper presented at the Limnological Society of Southerm Africa's second conference on the Orange River Project\ Bloemfontein, pp 187- 202 - Department of Water Affairs and Forestry, South Africa (DWAF). 1999. Resource directed measures for the protection of water resources. Volume 3: River ecosystems, version 1.0. - Hughes DA and Forsyth DA. (2006).A generic database and spatial interface for the application of hydrological and water resource models. Computers and Geosciences 32, 1389-1402. - Iversen TM, Madsen BL and Bøgestrand J. (2000). River conservation in the European Community, including Scandinavia.In: "Global Perspectives on River Conservation: Science Policy and Practice", Edited by P.J. Boon, B.R. Davies and G.E. Petts, John Wiley & Sons Ltd - IWR Source-to-Sea (eds). (2004).A Comprehensive Ecoclassification and Habitat Flow Stressor Response Manual.Prepared for IWQS: DWAF, Project no: 2002-148. - King JM and Louw D. (1998) Instream flow assessments for regulated rivers in South Africa using the Building Block Methodology. Aquatic Ecosystem Health and Management 1: 109-124. - Kleynhans, C.J. 2007 Module D: Fish response Assessment Index in River Ecoclassification manual for Ecostatus determination (version 2) Joint water research commission and Department of Water Affairs and Forestry Report WRC Report No. TT 330/08 - Kleynhans CJ, Louw MD, and Graham M.(2009). Module G: EcoClassification and EcoStatus determination in River EcoClassification: Index of Habitat Integrity (Section 1, Technical manual) Joint Water Research Commission and Department of Water Affairs and Forestry report. WRC Report No. TT330/08. - Kleynhans, C.J. & Louw, M.D. 2007 Reference frequency occurrence of fish species in South Africa Report produced for the Department of water Affairs and Forestry (Resource Quality Services) and the water Research Commission - Kleynhans, C.J., Louw, M.D. and Moolman, J. 2007b. Reference frequency of occurrence of fish species in South Africa. Report produced for the Department of Water Affairs and Forestry (Resource Quality Services) and the Water Research Commission. - Kleynhans, C.J., Louw, M.D., Thirion, C., Rossouw, N.J., and Rowntree, K. 2005. River EcoClassification: Manual for EcoStatus determination (Version 1). Joint Water Research Commission and Department of Water Affairs and Forestry report. WRC Report No. KV 168/05. - Kleynhans, C.J., Thirion, C. And Moolman, J. 2005 A level I River Ecoregion Classification System for South Africa, Lesotho and Swaziland Report No. N/0000/00/REQ0104 Resource Quality services, Department of Water Affairs and Forestry, Pretoria, South Africa - Kleynhans, C.J., Thirion, C., Moolman, J. and Gaulana, L. 2007a. A Level II River Ecoregion classification System for South Africa, Lesotho and Swaziland. Report No. N/0000/00/REQ0104. Resource Quality Services, Department of Water Affairs and Forestry, Pretoria, South Africa. - Louw, MD. 2010. Work package 5: Assessment of Environmental Flow Requirements. Deliverable 10: Resource Unit delineation. Draft Report prepared for ORASECOM, July 2010. - Mucina, L and Rutherford, M.C. (eds) 2006 The Vegetation of South Africa, Lesotho and Swaziland Strelizia 19 South African National Biodiversity Institute, Pretoria - Noss RF (1990). Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology 4:355-364. - Noss RF (1990). Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology 4:355-364. - O'Keefe, J.H. and Hughes, D.A. 2004. Flow-Stressor Response approach to environmental flow requirement assessment. In: Hughes, D.A. (editor): SPATSIM, and integrating framework for ecological Reserve Determination and implementation. WRC Report no: TT245/04. Water Research Commission, Pretoria, South Africa. - O'Keeffe JH, Hughes DA and Tharme R. (2002).Linking ecological responses to altered flows, for use in environmental flow assessments: the Flow Stress-Response method.Proceedings of the International Association of Theoretical and Applied Limnology, 28, 84-92. - Palmer, R. W. 1997a. Principles of Integrated Control of Blackflies (Diptera: Simuliidae) in South Africa. WRC Report No. 650/1/97. Water Research Commission, Pretoria, South Africa. - Palmer, R. W. 1996. Macroinvertebrates in the Orange River, with emphasis on conservation and management. Southern African Journal of Aquatic Sciences 22(1/2): 3-51. - Palmer, R. W. 1997b. Changes in the abundance of invertebrates in the stones-in-current biotope in the middle Orange River over five years. Water Research Commission Report No
KV130/00. - Pitchford, R.J. and Visser, P.S. 1975 The effect of large dams on river water temperature below the dam with special reference to Bilharzia and the Verwoerd Dam South African Journal of Science 71: 212-213 - Pretorius, S.J., de Kock, K.N. and van Eeden, J.A. 1974 Voorlopige kommentaar aangaande die voorkoms van die waterslakke in die Oranjerivier 2. Die Hendrik Verwoerd Dam paper presented at the Limnological Society of Southern Africa's second conference on the Orange River Project\ Bloemfontein, pp 205 - 211 - Rountree K and du Preez L (in prep). Geomorphology Driver Assessment Index. Joint Water Research Commission and Department of Water Affairs and Forestry report. Water Research Commission, Pretoria, South Africa. - Rutherford, M.C. and Westfall, R.H. 1986 Biomes of Southern Africa An Objective Categorisation: Memoirs of the Botanical Survey of South Africa Botanical Research Institute, Department of Agricultural and Water Supply Pretoria - Thirion C. (2007). Module E: Macroinvertebrate Response Assessment Index in River EcoClassification: Manual for EcoStatus Determination (version 2). Joint Water Research Commission and Department of Water Affairs and Forestry report. WRC Report No. TT330/08. - Van Wyk, B. and van Wyk, P. 1997 Field Guide to Trees of Southern Africa Struik, Cape Town - Van Wyk, B. & Van wyk, P. 1997 Field Guide to Trees of Southern Africa Struik, Cape Town, South Africa - Louw D, Kotze P, Mackenzie J. 2010. Scoping study to identify priority areas for detailed EFR and other assessments. Produced for WRP as part of Support to Phase II ORASECOM Basin Wide Integrated Water Resources Management Plan.